

Malla Reddy Engineering College
(UGC Autonomous Institution, Approved by AICTE, & Affiliated to JNTUH).

Accredited by NAAC with ‘A++’ Grade (Cycle-III), Maisammaguda (H),

Medchal-Malkajgiri District, Secunderabad, Telangana–500100, www.mrec.ac.in

Department of Information Technology

II B.TECH I SEM (A.Y.2024-25)

Lecture Notes

On

C0509-COMPUTER ORGANIZATION & ARCHITECTURE

http://www.mrec.ac.in/

2022-23

Onwards

(MR-22)

MALLA REDDY ENGINEERING COLLEGE

(Autonomous)
B.Tech.

III Semester

Code: C0509 Computer Organization and Architecture
(Common for CSE, CSE(DS), CSE (AI and ML),

CSE(Cyber Security), CSE(IOT), AIML and IT)

L T P

Credits: 3 3 - -

Prerequisites: A Course on “DLD”.

Objectives

1. The purpose of the course is to introduce principles of Digital fundamentals computer
organization and the basic architectural concepts.

2. It begins with basic organization, design, and programming of a simple digital computer

and introduces simple register transfer language to specify various computer operations.

3. Topics include computer arithmetic, instruction set design, microprogrammed control

unit, pipelining and vector processing, memory organization and I/O systems, and

multiprocessors.

MODULE – I [10 Periods]

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of

Computer Organization, Computer Design and Computer Architecture. Register Transfer

Language and Micro operations: Register Transfer language, Register Transfer, Bus and

memory transfers, Arithmetic Micro operations, logic micro operations, shift micro

operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer

instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input –

Output and Interrupt.

MODULE – II [10 Periods]

Micro programmed Control: Control memory, Address sequencing, micro program

example, design of control unit. Central Processing Unit: General Register Organization,

Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

MODULE – III [9 Periods]

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point

Representation. Computer Arithmetic: Addition and subtraction, multiplication Algorithms,

Division Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic unit,

Decimal Arithmetic operations.

MODULE – IV [10 Periods]

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of

Transfer, Priority Interrupt Direct memory Access. Memory Organization: Memory

Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

MODULE – V [9 Periods]

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics. Pipeline

and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction

Pipeline, RISC Pipeline, Vector Processing, Array Processor. Multi Processors:

Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration,

Interprocessor communication and synchronization, Cache Coherence.

50

Textbook:

1. Computer System Architecture, M. Moris Mano, 3rd Edition, Pearson/PHI.

References:

1. Computer Organization, Car Hamacher, ZvonksVranesic, SafeaZaky, 5th Edition,

McGraw Hill.

2. Computer Organization and Architecture, William Stallings 6th Edition, Pearson/PHI.

3. Structured Computer Organization, Andrew S. Tanenbaum, 4th Edition, PHI/Pearson.

E-Resources:

1. https://books.google.co.in/books?isbn=8131700704
2. http://ndl.iitkgp.ac.in/document/yVCWqd6u7wgye1qwH9xY7Eh9eBOsT1ELoYpKlg_xn

grkluevXOJLs1TbxS8q2icgUs3hL4_KAi5So5FgXcVg

3. http://ndl.iitkgp.ac.in/document/yVCWqd6u7wgye1qwH9xY7xAYUzYSlXl4zudlsolr-

e7wQNrNXLxbgGFxbkoyx1iN3YbHuFrzI2jc_70rWMEwQ

4. http://nptel.ac.in/courses/106106092/

Outcomes:

1. Understand the basics of instructions sets and their impact on processor design.

2. Demonstrate an understanding of the design of the functional units of a digital computer

system.

3. Evaluate cost performance and design trade-offs in designing and constructing a

computer processor including memory.

4. Design a pipeline for consistent execution of instructions with minimum hazards.

5. Recognize and manipulate representations of numbers stored in digital computers.

CO- PO, PSO Mapping
(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

COs
Programme Outcomes (POs) PSOs

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CO1 3 2 2 2

CO2 2 3 1

CO3 2 2 3 2 2 2

CO4 3

CO5 3

51

http://ndl.iitkgp.ac.in/document/yVCWqd6u7wgye1qwH9xY7Eh9eBOsT1ELoYpKlg_xn
http://ndl.iitkgp.ac.in/document/yVCWqd6u7wgye1qwH9xY7xAYUzYSlXl4zudlsolr-
http://nptel.ac.in/courses/106106092/

COMPUTER ORGANIZATION AND ARCHITECTURE

MODULE-I

DIGITAL COMPUTER

A digital system that performs various computational tasks.

Digital: The word digital implies that the information in the computer is represented by variables that take a

limited number of discrete values. These discrete values are processed internally by components that can

maintain a limited number of discrete states. (0,1,…9 provide 10 discrete values)

First electronic digital computer developed in 1940s which was used primarily for numerical computations

(using discrete elements i.e., digits). From this application the term digital computer has emerged.

Digital computers function more reliably if only two states are used because of physical restriction of

components and because of human logic tends to binary (True/False or YES/NO statements)

Digital components that are constrained to take discrete values are further constrained to take only two values-

binary 0/1.

Information in digital computers is represented by a group of bits (binary digit is called a bit).

By using various coding techniques, grouos of bits can be made to represent not only binary numbers but also

other discrete symbols-decimal digits, letters of alphabets.

By use of binary arrangements and by using various coding tecniques, the groups of bits are used to develop

computer sets of instructions for performing various types of computations.

BLOCK DIAGRAM OF DIGITAL COMPUTER

A computer system is subdivided into two functional entities: hardware, software.

Hardware-it consists of all the electronic components and electric mechanical devices that compare the

physical entity of the device.

Software-it consists of the instructions and data that the computer manipulates to perform various data

processing tasks.

Central Processing Unit (CPU): Contains an arithmetic and logic unit for manipulating data, a number of

registers for storing data, and a control circuit for fetching and executing instructions.

Memory Unit (MU): Contains storage for instructions and data. ROM(Read-Only Memory) is a part of

memory unit. MU is also called as Primary memory/Internal memory/Principal memory.

Random Access Memory (RAM): used for real-time processing of the data. It allows your computer to

switch between programs and have large files ready to view.

Input-Output devices: They are used for generating inputs from the user and displaying the final results to

the user.

Eg: keyboard, mouse, terminals, magnetic disk frives, and other communication devices.

COMPUTER ORGANIZATION

It deals with the internal view of the computer and the roles that the internal components play during the

execution of a program. It includes the organization of major parts of a computer such as the processor,

memory and peripheral devices.

Processor organization: It deals with main components of a processor, how these are interconnected

and how these operate execution of an instruction.

Memory organization: The memory organization of a memory unit deals with how its different

components are structured and interconnected.

COMPUTER ARCHITECTURE

It deals with the external view of a computer, that is, it is concerned with the structure and behavior of the

computer viewed by a user such as assembly language programmer or machine language programmer.

It can be defined as an interface between hardware and software.

A programmer needs to be aware of:

 Specific instructions supported by the processor (called as processor instruction set),

 Instruction formats,

 Specific registers and their roles,

 The techniques for accessing the data stored in the memory,

 The way to perform input-output operations.

System program is directly interacting with the computer hardware. They are written for specific computer

architecture.

Eg: Operating Systems, devices, drivers, compilers, etc.

Application programs invoke the services offered by the system programs. They are independent of the

architecture and are converted to machine-dependent programs through a system such as a compiler.

LOGIC GATES USED IN DIGITAL COMPUTER

Binary information is represented in digital computers by physical quantities called signals. Electrical signals

such as voltages exist through out the computers in either one of the two recognizable state. The two states

represent a binary variable that can be equal to 1 or 0.

Eg: A digital computer utilize a signal of 3volts to represent binary 1 and 0.5volts to represent binary

0. The input terminal of digital circuits will accept binary signals of only 3 and 0.5 volts to represent binary

input and output corresponding to 1 or 0 resp.

At the core level, computer communicates in the form of 0 or 1, which is nothing but low and high voltage

signals.

The manipulation of binary information is done by logic circuits called gates. Gates are blocks of hardware

that produce signals of binary 1 or 0 when input logic requirements are satisfied.

LOGIC GATES:

Binary logic deals with binary variables and with operations that assume a large meaning. It is used to

describe in algebraic, or tabular form, the manipulation done by logic circuits called Gates.

Gates are blocks of hardware that produce graphic symbol and it’s operation can be described by means of an

algebraic expression. The input-output relationship of the binary variables for each gate can be represented by

a Truth-Table.

List of Logic Gates:

1. AND

2. OR

3. NOT

4. NAND

5. NOR

6. XOR

7. XNOR

REGISTER TRANSFER AND MICROOPERATIONS

 Register Transfer Language

 Register Transfer

 Bus And Memory Transfers

 Types of Micro-operations

 Arithmetic Micro-operations

 Logic Micro-operations

 Shift Micro-operations

 Arithmetic Logic Shift Unit

BASIC DEFINITIONS:

A digital system is an interconnection of digital hardware modules.

The modules are registers, decoders, arithmetic elements, and control logic.

The various modules are interconnected with common data and control paths to form a digital

computer system.

Digital modules are best defined by the registers they contain and the operations that are performed

on the data stored in them.

The operations executed on data stored in registers are called microoperations.

A microoperation is an elementary operation performed on the information stored in one or more

registers.

The result of the operation may replace the previous binary information of a register or may be

transferred to another register.

Examples of microoperations are shift, count, clear, and load.

The internal hardware organization of a digital computer is best defined by specifying:

1. The set of registers it contains and their function.

2. The sequence of microoperations performed on the binary information stored in the

registers.

3. The control that initiates the sequence of microoperations.

REGISTER TRANSFER LANGUAGE

The symbolic notation used to describe the micro-operation transfer among registers is called RTL

(Register Transfer Language).

The use of symbols instead of a narrative explanation provides an organized and concise manner for

listing the micro-operation sequences in registers and the control functions that initiate them.

A register transfer language is a system for expressing in symbolic form the microoperation

sequences among the registers of a digital module.

It is a convenient tool for describing the internal organization of digital computers in concise and

precise manner.

REGISTERS:

Computer registers are designated by upper case letters (and optionally followed by digits or letters)

to denote the function of the register.

For example, the register that holds an address for the memory unit is usually called a memory

address register and is designated by the name MAR.

Other designations for registers are PC (for program counter), IR (for instruction register, and R1

(for processor register).

The individual flip-flops in an n-bit register are numbered in sequence from 0 through n-1, starting

from 0 in the rightmost position and increasing the numbers toward the left.

Figure 4-1 shows the representation of registers in block diagram form.

The most common way to represent a register is by a rectangular box with the name of the register

inside, as in Fig. 4-1(a).

The individual bits can be distinguished as in (b).

The numbering of bits in a 16-bit register can be marked on top of the box as shown in (c).

16- bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned the symbol L (for low

byte) and bits 8 through 15 are assigned the symbol H (for high byte).

The name of the 16-bit register is PC. The symbol PC (0-7) or PC (L) refers to the low-order byte

and PC (8-15) or PC (H) to the high-order byte.

REGISTER TRANSFER:

Information transfer from one register to another is designated in symbolic form by means ofa

replacement operator.

The statement R2← R1 denotes a transfer of the content of register R1 into register R2.

It designates a replacement of the content of R2 by the content of R1.

By definition, the content of the source register R 1 does not change after the transfer.

If we want the transfer to occur only under a predetermined control condition then it can be shown by

an if-then statement.

if (P=1) then R2← R1

P is the control signal generated by a control section.

We can separate the control variables from the register transfer operation by specifying a Control

Function.

Control function is a Boolean variable that is equal to 0 or 1.

control function is included in the statement as

P: R2← R1

Control condition is terminated by a colon implies transfer operation be executed by the hardware

only if P=1.

Every statement written in a register transfer notation implies a hardware construction for

implementing the transfer.

Figure 4-2 shows the block diagram that depicts the transfer from R1 to R2.

The n outputs of register R1 are connected to the n inputs of register R2.

The letter n will be used to indicate any number of bits for the register. It will be replaced by an

actual number when the length of the register is known.

Register R2 has a load input that is activated by the control variable P.

It is assumed that the control variable is synchronized with the same clock as the one applied to the

register.

As shown in the timing diagram, P is activated in the control section by the rising edge of a clock

pulse at time t.

The next positive transition of the clock at time t + 1 finds the load input active and the data inputs of

R2 are then loaded into the register in parallel.

P may go back to 0 at time t+1; otherwise, the transfer will occur with every clock pulse transition

while P remains active.

Even though the control condition such as P becomes active just after time t, the actual transfer does

not occur until the register is triggered by the next positive transition of the clock at time

t +1.

The basic symbols of the register transfer notation are listed in below table

 Symbol Description Examples

Letters(and numerals) Denotes a register MAR, R2

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow <-- Denotes transfer of

information

R2 <-- R1

Comma , Separates two microoperations R2 <-- R1, R1 <-- R2

A comma is used to separate two or more operations that are executed at the same time.

The statement

T: R2←R1, R1← R2 (exchange operation)

denotes an operation that exchanges the contents of two rgisters during one common clock pulse

provided that T=1.

Bus and Memory Transfers:

A more efficient scheme for transferring information between registers in a multiple-register

configuration is a Common Bus System.

A common bus consists of a set of common lines, one for each bit of a register.

Control signals determine which register is selected by the bus during each particular register

transfer.

Different ways of constructing a Common Bus System

 Using Multiplexers

 Using Tri-state Buffers

COMMON BUS SYSTEM IS WITH MULTIPLEXERS:

The multiplexers select the source register whose binary information is then placed on the bus.

The construction of a bus system for four registers is shown in below Figure.

The bus consists of four 4 x 1 multiplexers each having four data inputs, 0 through 3, and two

selection inputs, S1 and S0.

For example, output 1 of register A is connected to input 0 of MUX 1 because this input is labelled

A1.

The diagram shows that the bits in the same significant position in each register are connected to the

data inputs of one multiplexer to form one line of the bus.

Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the four 1 bits of the

registers, and similarly for the other two bits.

The two selection lines Si and So are connected to the selection inputs of all four multiplexers.

The selection lines choose the four bits of one register and transfer them into the four-line common

bus.

When S1S0 = 00, the 0 data inputs of all four multiplexers are selected and applied to the outputs that

form the bus.

This causes the bus lines to receive the content of register A since the outputs of this register are

connected to the 0 data inputs of the multiplexers.

Similarly, register B is selected if S1S0 = 01, and so on.

Table 4-2 shows the register that is selected by the bus for each of the four possible binary value of

the selection lines.

In general a bus system has

 multiplex “k” Registers

 eachregister of“n” bits

 toproduce“n-linebus”

 no. of multiplexers required = n

 size of each multiplexer = k x 1

When the bus is includes in the statement, the register transfer is symbolized as follows:

BUS← C, R1← BUS

The content of register C is placed on the bus, and the content of the bus is loaded into register R1 by

activating its load control input. If the bus is known to exist in the system, it may be convenient just

to show the direct transfer.

R1← C

THREE-STATE BUS BUFFERS:

A bus system can be constructed with three-state gates instead of multiplexers.

A three-state gate is a digital circuit that exhibits three states.

Two of the states are signals equivalent to logic 1 and 0 as in a conventional gate.

The third state is a high-impedance state.

The high-impedance state behaves like an open circuit, which means that the output is disconnected

and does not have logic significance.

Because of this feature, a large number of three-state gate outputs can be connected with wires to form

a common bus line without endangering loading effects.

The graphic symbol of a three-state buffer gate is shown in Fig. 4-4.

It is distinguished from a normal buffer by having both a normal input and a control input.

The control input determines the output state. When the control input is equal to 1, the output is

enabled and the gate behaves like any conventional buffer, with the output equal to the normal input.

When the control input is 0, the output is disabled and the gate goes to a high-impedance state,

regardless of the value in the normal input.

The construction of a bus system with three-state buffers is shown in Fig. 4

The outputs of four buffers are connected together to form a single bus line.

The control inputs to the buffers determine which of the four normal inputs will communicate with the

bus line.

No more than one buffer may be in the active state at any given time. The connected buffers must be

controlled so that only one three-state buffer has access to the bus line while all other buffers are

maintained in a high impedance state.

One way to ensure that no more than one control input is active at any given time is to use a decoder,

as shown in the diagram.

When the enable input of the decoder is 0, all of its four outputs are 0, and the bus line is in a high-

impedance state because all four buffers are disabled.

When the enable input is active, one of the three-state buffers will be active, depending on the binary

value in the select inputs of the decoder.

Memory Transfer:

The transfer of information from a memory word to the outside environment is called a read

operation.

The transfer of new information to be stored into the memory is called a write operation.

A memory word will be symbolized by the letter M.

The particular memory word among the many available is selected by the memory address during the

transfer.

It is necessary to specify the address of M when writing memory transfer operations.

This will be done by enclosing the address in square brackets following the letter M.

Consider a memory unit that receives the address from a register, called the address register,

symbolized by AR.

The data are transferred to another register, called the data register, symbolized by DR.

The read operation can be stated as follows:

Read: DR<- M [AR]

This causes a transfer of information into DR from the memory word M selected by the address in

AR.

The write operation transfers the content of a data register to a memory word M selected by the

address. Assume that the input data are in register R1 and the address is in AR.

The write operation can be stated as follows:

Write: M [AR] <- R1

Types of Micro-operations:

Register Transfer Micro-operations: Transfer binary information from one register to another.

Arithmetic Micro-operations: Perform arithmetic operation on numeric data stored in registers.

Logical Micro-operations: Perform bit manipulation operations on data stored in registers.

Shift Micro-operations: Perform shift operations on data stored in registers.

 REGISTER TRANSFER AND MICROOPERATIONS

 Register Transfer Language

 Register Transfer

 Bus And Memory Transfers

 Types of Micro-operations

 Arithmetic Micro-operations

 Logic Micro-operations

 Shift Micro-operations

 Arithmetic Logic Shift Unit

BASIC DEFINITIONS:

 A digital system is an interconnection of digital hardware modules.

 The modules are registers, decoders, arithmetic elements, and control logic.

 The various modules are interconnected with common data and control paths to form a digital

computer system.

 Digital modules are best defined by the registers they contain and the

operations that are performed on the data stored in them.

 The operations executed on data stored in registers are called microoperations.

 A microoperation is an elementary operation performed on the information stored in one or more

registers.

 The result of the operation may replace the previous binary

information of a register or may be transferred to another register.

 Examples of microoperations are shift, count, clear, and load.

 The internal hardware organization of a digital computer is best defined

by specifying:

1. The set of registers it contains and their function.

2. The sequence of microoperations performed on the binary information

stored in the registers.

3. The control that initiates the sequence of microoperations.

REGISTER TRANSFER LANGUAGE:

 The symbolic notation used to describe the micro-operation transfer among registers is called RTL

(Register Transfer Language).

 The use of symbols instead of a narrative explanation provides an organized and concise manner

for listing the micro-operation sequences in registers and the control functions that initiate them.

 A register transfer language is a system for expressing in symbolic form the microoperation

sequences among the registers of a digital module.

 It is a convenient tool for describing the internal organization of digital computers in concise and

precise manner.

Registers:

 Computer registers are designated by upper case letters (and optionally followed by digits or

letters) to denote the function of the register.

 For example, the register that holds an address for the memory unit is usually called a memory

address register and is designated by the name MAR.

 Other designations for registers are PC (for program counter), IR (for instruction register, and R1

(for processor register).

 The individual flip-flops in an n-bit register are numbered in sequence from 0 through n-1, starting

from 0 in the rightmost position and increasing the numbers toward the left.

 Figure 4-1 shows the representation of registers in block diagram form.

 The most common way to represent a register is by a rectangular box with the name of the

register inside, as in Fig. 4-1(a).

 The individual bits can be distinguished as in (b).

 The numbering of bits in a 16-bit register can be marked on top of the box as shown in (c).

 16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned the symbol L (for

low byte) and bits 8 through 15 are assigned the symbol H (for high byte).

 The name of the 16-bit register is PC. The symbol PC (0-7) or PC (L) refers to the low-order

byteand PC (8-15) or PC (H) to the high-order byte.

Register Transfer:

 Information transfer from one register to another is designated in symbolic form by means of a

replacement operator.

 The statement R2← R1 denotes a transfer of the content of register R1 into register R2.

 It designates a replacement of the content of R2 by the content of R1.

 By definition, the content of the source register R 1 does not change after the transfer.

 If we want the transfer to occur only under a predetermined control condition then it can be

shown by an if-then statement.

if (P=1) then R2← R1

 P is the control signal generated by a control section.

 We can separate the control variables from the register transfer operation by specifying a Control

Function.

 Control function is a Boolean variable that is equal to 0 or 1.

 control function is included in the statement as

P: R2← R1

 Control condition is terminated by a colon implies transfer operation be executed by the

hardware only if P=1.

 Every statement written in a register transfer notation implies a hardware construction for

implementing the transfer.

 Figure 4-2 shows the block diagram that depicts the transfer from R1 to R2.

 The n outputs of register R1 are connected to the n inputs of register R2.

 The letter n will be used to indicate any number of bits for the register. It will be replaced by an

actual number when the length of the register is known.

 Register R2 has a load input that is activated by the control variable P.

 It is assumed that the control variable is synchronized with the same clock as the one applied to

the register.

 As shown in the timing diagram, P is activated in the control section by the rising edge

of a clock pulse at time t.

 The next positive transition of the clock at time t + 1 finds the load input active and the data inputs

of R2 are then loaded into the register in parallel.

 P may go back to 0 at time t+1; otherwise, the transfer will occur with every clock pulse transition

while P remains active.

 Even though the control condition such as P becomes active just after time t, the actual transfer

does not occur until the register is triggered by the next positive transition of the clock at time

t +1.

 The basic symbols of the register transfer notation are listed in below table

Symbol Description Examples

Letters(and numerals) Denotes a register MAR, R2

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow <-- Denotes transfer of

information

R2 <-- R1

Comma , Separates two microoperations R2 <-- R1, R1 <-- R2

 A comma is used to separate two or more operations that are executed at the same time.

 The statement

T : R2← R1, R1← R2 (exchange operation)

denotes an operation that exchanges the contents of two rgisters during one common clock pulse

provided that T=1.

Bus and Memory Transfers:

 A more efficient scheme for transferring information between registers in a multiple-register

configuration is a Common Bus System.

 A common bus consists of a set of common lines, one for each bit of a register.

 Control signals determine which register is selected by the bus during each particular register

transfer.

 Different ways of constructing a Common Bus System

 Using Multiplexers

 Using Tri-state Buffers

Common bus system is with multiplexers:

 The multiplexers select the source register whose binary information is then placed

on the bus.

 The construction of a bus system for four registers is shown in below Figure.

 The bus consists of four 4 x 1 multiplexers each having four data inputs, 0 through 3, and two

selection inputs, S1 and S0.

 For example, output 1 of register A is connected to input 0 of MUX 1 because this input is labelled

A1.

 The diagram shows that the bits in the same significant position in each register are connected to

the data inputs of one multiplexer to form one line of the bus.

 Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the four 1 bits of

theregisters, and similarly for the other two bits.

 The two selection lines Si and So are connected to the selection inputs of all four multiplexers.

 The selection lines choose the four bits of one register and transfer them into the four-line

common bus.

 When S1S0 = 00, the 0 data inputs of all four multiplexers are selected and applied to the outputs

that form the bus.

 This causes the bus lines to receive the content of register A since the outputs of this register are

connected to the 0 data inputs of the multiplexers.

 Similarly, register B is selected if S1S0 = 01, and so on.

 Table 4-2 shows the register that is selected by the bus for each of the four possible binary value

of the selection lines.

 In general a bus system has

 multiplex “k” Registers

 each register of “n” bits

 to produce “n-line bus”

 no. of multiplexers required = n

 size of each multiplexer = k x 1

 When the bus is includes in the statement, the register transfer is symbolized as follows:

BUS← C, R1← BUS

 The content of register C is placed on the bus, and the content of the bus is loaded into register R1

by activating its load control input. If the bus is known to exist in the system, it may be convenient

just to show the direct transfer.

R1← C

Three-State Bus Buffers:

 A bus system can be constructed with three-state gates instead of multiplexers.

 A three-state gate is a digital circuit that exhibits three states.

 Two of the states are signals equivalent to logic 1 and 0 as in a conventional gate.

 The third state is a high-impedance state.

 The high-impedance state behaves like an open circuit, which means that the output is

disconnected and does not have logic significance.

 Because of this feature, a large number of three-state gate outputs can be connected with wires to

form a common bus line without endangering loading effects.

 The graphic symbol of a three-state buffer gate is shown in Fig. 4-4.

 It is distinguished from a normal buffer by having both a normal input and a control input.

 The control input determines the output state. When the control input is equal to 1, the output is

enabled and the gate behaves like any conventional buffer, with the output equal to the normal

input.

 When the control input is 0, the output is disabled and the gate goes to a high-impedance state,

regardless of the value in the normal input.

 The construction of a bus system with three-state buffers is shown in Fig. 4

 The outputs of four buffers are connected together to form a single bus line.

 The control inputs to the buffers determine which of the four normal inputs will communicate with

the bus line.

 No more than one buffer may be in the active state at any given time. The connected buffers must

be controlled so that only one three-state buffer has access to the bus line while all other buffers

are maintained in a high impedance state.

 One way to ensure that no more than one control input is active at any given time is to use a

decoder, as shown in the diagram.

 When the enable input of the decoder is 0, all of its four outputs are 0, and the bus line is in a

high-impedance state because all four buffers are disabled.

 When the enable input is active, one of the three-state buffers will be active, depending on the

binary value in the select inputs of the decoder.

Memory Transfer:

 The transfer of information from a memory word to the outside environment is called a read

operation.

 The transfer of new information to be stored into the memory is called a write operation.

 A memory word will be symbolized by the letter M.

 The particular memory word among the many available is selected by the memory address during

the transfer.

 It is necessary to specify the address of M when writing memory transfer operations.

 This will be done by enclosing the address in square brackets following the letter M.

 Consider a memory unit that receives the address from a register, called the address register,

symbolized by AR.

 The data are transferred to another register, called the data register, symbolized by DR.

 The read operation can be stated as follows:

Read: DR<- M [AR]

 This causes a transfer of information into DR from the memory word M selected by the address in

AR.

 The write operation transfers the content of a data register to a memory word M selected by the

address. Assume that the input data are in register R1 and the address is in AR.

 The write operation can be stated as follows:

Write: M [AR] <- R1

Types of Micro-operations:

 Register Transfer Micro-operations: Transfer binary information from one register to another.

 Arithmetic Micro-operations: Perform arithmetic operation on numeric data stored in registers.

 Logical Micro-operations: Perform bit manipulation operations on data stored in registers.

 Shift Micro-operations: Perform shift operations on data stored in registers.

 Register Transfer Micro-operation doesn’t change the information content when the binary

information moves from source register to destination register.

 Other three types of micro-operations change the information change the information content

during the transfer.

Arithmetic Micro-operations:

 The basic arithmetic micro-operations are

o Addition

o Subtraction

o Increment

o Decrement

o Shift

 The arithmetic Micro-operation defined by the statement below specifies the add micro-

operation.

R3 ← R1 + R2

 It states that the contents of R1 are added to contents of R2 and sum is transferred to R3.

 To implement this statement hardware requires 3 registers and digital component that performs

addition

 Subtraction is most often implemented through complementation and addition.

 The subtract operation is specified by the following statement

R3 ← R1 + R2 + 1

 instead of minus operator, we can write as

 R2 is the symbol for the 1’s complement of R2

 Adding 1 to 1’s complement produces 2’s complement

 Adding the contents of R1 to the 2's complement of R2 is equivalent to R1-R2.

Binary Adder:

 Digital circuit that forms the arithmetic sum of 2 bits and the previous carry is called FULL ADDER.

 Digital circuit that generates the arithmetic sum of 2 binary numbers of any lengths is called

BINARY ADDER.

 Figure 4-6 shows the interconnections of four full-adders (FA) to provide a 4-bit binary adder.

 The augends bits of A and the addend bits of B are designated by subscript numbers from

right to left, with subscript 0 denoting the low-order bit.

 The carries are connected in a chain through the full-adders. The input carry to the

binary adder is Co and the output carry is C4. The S outputs of the full-adders generate

the required sum bits.

 An n-bit binary adder requires n full-adders.

Binary Adder – Subtractor:

 The addition and subtraction operations can be combined into one common circuit by including an

exclusive-OR gate with each full-adder.

 A 4-bit adder-subtractor circuit is shown in Fig. 4-7.

 The mode input M controls the operation. When M = 0 the circuit is an adder and when M = 1 the

circuit becomes a subtractor.

 Each exclusive-OR gate receives input M and one of the inputs of B

 When M = 0, we have B xor 0 = B. The full-adders receive the value of B, the input carry is 0,

andthe circuit performs A plus B.

 When M = 1, we have B xor 1 = B' and Co = 1.

 The B inputs are all complemented and a 1 is added through the input carry.

 The circuit performs the operation A plus the 2's complement of B.

Binary Incrementer:

 The increment microoperation adds one to a number in a register.

 For example, if a 4-bit register has a binary value 0110, it will go to 0111 after it is incremented.

 This can be accomplished by means of half-adders connected in cascade.

 The diagram of a 4-bit 'combinational circuit incrementer is shown in Fig. 4-8.

 One of the inputs to the least significant half-adder (HA) is connected to logic-1 and the other

input is connected to the least significant bit of the number to be incremented.

 The output carry from one half-adder is connected to one of the inputs of the next-higher-order

half-adder.

 The circuit receives the four bits from A0 through A3, adds one to it, and generates the

incremented output in S0 through S3.

 The output carry C4 will be 1 only after incrementing binary 1111. This also causes outputs

S0through S3 to go to 0.

 The circuit of Fig. 4-8 can be extended to an n -bit binary incrementer by extending the diagram to

include n half-adders.

 The least significant bit must have one input connected to logic-1. The other inputs receive the

number to be incremented or the carry from the previous stage.

Arithmetic Circuit:

 The basic component of an arithmetic circuit is the parallel adder.

 By controlling the data inputs to the adder, it is possible to obtain different types of arithmetic

operations.

 The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four full-adder circuits

thatconstitute the 4-bit adder and four multiplexers for choosing different operations.

 There are two 4-bit inputs A and B and a 4-bit output D.

 The four inputs from A go directly to the X inputs of the binary adder.

 Each of the four inputs from B are connected to the data inputs of the multiplexers.

 The multiplexers data inputs also receive the complement of B.

 The other two data inputs are connected to logic-0 and logic-1.

 The four multiplexers are controlled by two selection inputs S1 and S0. The input carry Cin, goes to

the carry input of the FA in the least significant position. The other carries are connected from one

stage to the next.

 By controlling the value of Y with the two selection inputs S1 and S0 and making Cin equal to 0 or

1,it is possible to generate the eight arithmetic microoperations listed in Table 44.

Addition:

 When S1S0= 00, the value of B is applied to the Y inputs of the adder.

 If Cir, = 0, the output D =A+B.

 If Cin = 1, output D=A+B + 1.

 Both cases perform the add microoperation with or without adding the input carry.

Subtraction:

 When S1S0 = 01, the complement of B is applied to the Y inputs of the adder.

 If Cin = 1, then D = A + B + 1. This produces A plus the 2's complement of B,

which isequivalent to a subtraction of A -B.

 When Cin = 0 then D = A + B. This is equivalent to a subtract with borrow, that

is,A-B-1.

Increment:

 When S1S0 = 10, the inputs from B are neglected, and instead, all 0's are inserted into the Y inputs.

The output becomes D = A + 0 + Cin. This gives D = A when Cin = 0 and D = A + 1 when Cin = 1.

 In the first case we have a direct transfer from input A to output D.

 In the second case, the value of A is incremented by 1.

Decrement:

 When S1S0= 11, all l's are inserted into the Y inputs of the adder to produce the decrement

operation D = A -1 when Cin = 0.

 This is because a number with all 1's is equal to the 2's complement of 1 (the 2's complement of

binary 0001 is 1111). Adding a number A to the 2's complement of 1 produces F = A + 2's

complement of 1 = A — 1. When Cin = 1, then D = A -1 + 1=A, which causes a direct transfer

frominput A to output D.

Logic Micro-operations:

 Logic microoperations specify binary operations for strings of bits stored in registers.

 These operations consider each bit of the register separately and treat them as binary variables.

 For example, the exclusive-OR microoperation with the contents of two registers RI and R2 is

symbolized by the statement

 It specifies a logic microoperation to be executed on the individual bits of the registers provided

that the control variable P = 1.

List of Logic Microoperations:

 There are 16 different logic operations that can be performed with two binary variables.

 They can be determined from all possible truth tables obtained with two binary variables as

shown in Table 4-5.

 The 16 Boolean functions of two variables x and y are expressed in algebraic form in the first

column of Table 4-6.

 The 16 logic microoperations are derived from these functions by replacing variable x by the

binary content of register A and variable y by the binary content of register B.

 The logic micro-operations listed in the second column represent a relationship between the

binary content of two registers A and B.

Hardware Implementation:

 The hardware implementation of logic microoperations requires that logic gates be inserted for

each bit or pair of bits in the registers to perform the required logic function.

 Although there are 16 logic microoperations, most computers use only four--AND, OR,

XOR(exclusive-OR), and complement from which all others can be derived.

 Figure 4-10 shows one stage of a circuit that generates the four basic logic microoperations.

 It consists of four gates and a multiplexer. Each of the four logic operations is generated through a

gate that performs the required logic.

 The outputs of the gates are applied to the data inputs of the multiplexer. The two selection inputs

S1 and S0 choose one of the data inputs of the multiplexer and direct its value to the output.

Some Applications:

 Logic micro-operations are very useful for manipulating individual bits or a portion of a word stored in a

register.

 They can be used to change bit values, delete a group of bits or insert new bits values into a register.

 The following example shows how the bits of one register (designated by A) are manipulated by logic

microoperations as a function of the bits of another register (designated by B).

 Selective set

 The selective-set operation sets to 1 the bits in register A where there are corresponding l's

in register B. It does not affect bit positions that have 0's in B. The following numerical

example clarifies this operation:

 The OR microoperation can be used to selectively set bits of a register.

 Selective complement

 The selective-complement operation complements bits in A where there are corresponding

1's in B. It does not affect bit positions that have 0's in B. For example:

 The exclusive-OR microoperation can be used to selectively complement bits of a register.

 Selective clear

 The selective-clear operation clears to 0 the bits in A only where there are

corresponding l's in B. For example:

 The corresponding logic microoperation is

 Mask

 The mask operation is similar to the selective-clear operation except that the bits of A are cleared

only where there are corresponding O's in B . The mask operation is an AND micro operation as

seen from the following numerical example:

 Insert

 The insert operation inserts a new value into a group of bits. This is done by first masking the bits

and then ORing them with the required value.

 For example, suppose that an A register contains eight bits, 0110 1010. To replace the four leftmost

bits by the value 1001 we first mask the four unwanted bits:

 The mask operation is an AND microoperation and the insert operation is an OR

microoperation.

 Clear

 The clear operation compares the words in A and B and produces an all 0's result if the two

numbers are equal. This operation is achieved by an exclusive-OR microoperation as shown

by the following example

Shift Microoperations:

 Shift microoperations are used for serial transfer of data.

 The contents of a register can be shifted to the left or the right.

 During a shift-left operation the serial input transfers a bit into the rightmost position.

 During a shift-right operation the serial input transfers a bit into the leftmost position.

 There are three types of shifts: logical, circular, and arithmetic.

 The symbolic notation for the shift microoperations is shown in Table 4-7.

 Logical Shift:

o A logical shift is one that transfers 0 through the serial input.

o The symbols shl and shr for logical shift-left and shift-right microoperations.

o The microoperations that specify a 1-bit shift to the left of the content of register R and a

1-bit shift to the right of the content of register R shown in table 4.7.

o The bit transferred to the end position through the serial input is assumed to be 0 duringa
logical shift.

 Circular Shift:

o The circular shift (also known as a rotate operation) circulates the bits of the register

around the two ends without loss of information.

o This is accomplished by connecting the serial output of the shift register to its serial input.

o We will use the symbols cil and cir for the circular shift left and right, respectively.

 Arithmetic Shift:

o An arithmetic shift is a microoperation that shifts a signed binary number to the left or

right.

o An arithmetic shift-left multiplies a signed binary number by 2.

o An arithmetic shift-right divides the number by 2.

o Arithmetic shifts must leave the sign bit unchanged because the sign of the number

remains the same when it is multiplied or divided by 2.

Hardware Implementation:

 A combinational circuit shifter can be constructed with multiplexers as shown in Fig. 4-12.

 The 4-bit shifter has four data inputs, A0 through A3, and four data outputs, H0 through H3.

 There are two serial inputs, one for shift left (IL) and the other for shift right (IR).

 When the selection input S=0 the input data are shifted right (down in the diagram).

 When S = 1, the input data are shifted left (up in the diagram).

 The function table in Fig. 4-12 shows which input goes to each output after the shift.

 A shifter with n data inputs and outputs requires n multiplexers.

 The two serial inputs can be controlled by another multiplexer to provide the three possible typesof

shifts.

Arithmetic Logic Shift Unit:

 Instead of having individual registers performing the microoperations directly, computer systems

employ a number of storage registers connected to a common operational unit called an arithmetic

logic unit, abbreviated ALU.

 The ALU is a combinational circuit so that the entire register transfer operation from the

source registers through the ALU and into the destination register can be performed during one

clock pulse period.

 The shift microoperations are often performed in a separate unit, but sometimes the shift unit is

made part of the overall ALU.

 The arithmetic, logic, and shift circuits introduced in previous sections can be combined into one

ALU with common selection variables. One stage of an arithmetic logic shift unit is shown in Fig.

4-13.

 Particular microoperation is selected with inputs S1 and S0. A 4 x 1 multiplexer at the output

chooses between an arithmetic output in Di and a logic output in Ei.

 The data in the multiplexer are selected with inputs S3 and S2. The other two data inputs to the

multiplexer receive inputs Ai-1 for the shift-right operation and Ai+1 for the shift-left operation.

 The circuit whose one stage is specified in Fig. 4-13 provides eight arithmetic operation, four logic

operations, and two shift operations.

 Each operation is selected with the five variables S3, S2, S1, S0 and Cin.

 The input carry Cin is used for selecting an arithmetic operation only.

 Table 4-8 lists the 14 operations of the ALU. The first eight are arithmetic operations and are

selected with S3S2 = 00.

 The next four are logic and are selected with S3S2 = 01.

 The input carry has no effect during the logic operations and is marked with don't-care x’s.

 The last two operations are shift operations and are selected with S3S2= 10 and 11.

 The other three selection inputs have no effect on the shift.

CONTENTS:

BASIC COMPUTER ORGANIZATION

AND DESIGN

 Instruction Codes

 Computer Registers

 Computer Instructions

 Timing And Control

 Instruction Cycle

 Register – Reference Instructions

 Memory – Reference Instructions

 Input – Output And Interrupt

1. Instruction Codes:

 The organization of the computer is defined by its internal registers, the timing and control structure,

and the set of instructions that it uses.

 Internal organization of a computer is defined by the sequence of micro-operations it performs on

data stored in its registers.

 Computer can be instructed about the specific sequence of operations it must perform.

 User controls this process by means of a Program.

 Program: set of instructions that specify the operations, operands, and the sequence by which

processing has to occur.

 Instruction: a binary code that specifies a sequence of micro-operations for the computer.
 The computer reads each instruction from memory and places it in a control register. The control then

interprets the binary code of the instruction and proceeds to execute it by issuing a sequence ofmicro-

operations. – Instruction Cycle

 Instruction Code: group of bits that instruct the computer to perform specific operation.

 Instruction code is usually divided into two parts: Opcode and address(operand)

 Operation Code (opcode):

 group of bits that define the operation

 Eg: add, subtract, multiply, shift, complement.

 No. of bits required for opcode depends on no. of operations available in computer.

 n bit opcode >= 2n (or less) operations

 Address (operand):

 specifies the location of operands (registers or memory words)

 Memory words are specified by their address

 Registers are specified by their k-bit binary code

 k-bit address >= 2k registers

Stored Program Organization:

 The ability to store and execute instructions is the most important property of a general-purpose

computer. That type of stored program concept is called stored program organization.

 The simplest way to organize a computer is to have one processor register and

an instruction code format with two parts. The first part specifies the operation

to be performed and the second specifies an address.

 The below figure shows the stored program organization

 Instructions are stored in one section of memory and data in another.

 For a memory unit with 4096 words we need 12 bits to specify an address since 212 = 4096.

 If we store each instruction code in one 16-bit memory word, we have available four bits for the

operation code (abbreviated opcode) to specify one out of 16 possible operations, and 12 bits to

specify the address of an operand.

 Accumulator (AC):

 Computers that have a single-processor register usually assign to it the name accumulator

and label it AC.

 The operation is performed with the memory operand and the content of AC.

Addressing of Operand:

 Sometimes convenient to use the address bits of an instruction code not as an address but as the

actual operand.

 When the second part of an instruction code specifies an operand, the instruction is said to have an

immediate operand.

 When the second part specifies the address of an operand, the instruction is said to have a direct

address.

 When second part of the instruction designate an address of a memory word in which the address of

the operand is found such instruction have indirect address.

 One bit of the instruction code can be used to distinguish between a direct and an indirect address.
 The instruction code format shown in Fig. 5-2(a). It consists of a 3-bit operation code, a 12-bit

address, and an indirect address mode bit designated by I. The mode bit is 0 for a direct address and 1

for an indirect address.

 A direct address instruction is shown in Fig. 5-2(b).
 It is placed in address 22 in memory. The I bit is 0, so the instruction is recognized as a direct address

instruction. The opcode specifies an ADD instruction, and the address part is the binary equivalent of

457.

 The control finds the operand in memory at address 457 and adds it to the content of AC.

 The instruction in address 35 shown in Fig. 5-2(c) has a mode bit I = 1.

 Therefore, it is recognized as an indirect address instruction.

 The address part is the binary equivalent of 300. The control goes to address 300 to find the addressof

the operand. The address of the operand in this case is 1350.

 The operand found in address 1350 is then added to the content of AC.

 The effective address to be the address of the operand in a computation-type instruction or the

target address in a branch-type instruction.

 Thus the effective address in the instruction of Fig. 5-2(b) is 457 and in the instruction of Fig 5-2(c)

is1350.

2. Computer Registers:

 What is the need for computer registers?

 The need of the registers in computer for

 Instruction sequencing needs a counter to calculate the address of the next instruction
after execution of the current instruction is completed (PC).

 Necessary to provide a register in the control unit for storing the instruction code afterit

is read from memory (IR).

 Needs processor registers for manipulating data (AC and TR) and a register for holding

a memory address (AR).

 The above requirements dictate the register configuration shown in Fig. 5-3.

 The registers are also listed in Table 5.1 together with a brief description of their function and the

number of bits that they contain.

 The data register (DR) holds the operand read from memory.

 The accumulator (AC) register is a general purpose processing register.

 The instruction read from memory is placed in the instruction register (IR).

 The temporary register (TR) is used for holding temporary data during the processing.

 The memory address register (AR) has 12 bits since this is the width of a memory address.

 The program counter (PC) also has 12 bits and it holds the address of the next instruction to be read

from memory after the current instruction is executed.

 Two registers are used for input and output.

 The input register (INPR) receives an 8-bit character from an input device.

 The output register (OUTR) holds an 8-bit character for an output device.

Common Bus System:

 The basic computer has eight registers, a memory unit, and a control unit

 Paths must be provided to transfer information from one register to another and between memoryand

registers.

 A more efficient scheme for transferring information in a system with many registers is to use a
common bus.

 The connection of the registers and memory of the basic computer to a common bus system is

shown in Fig. 5-4.

 The outputs of seven registers and memory are connected to the common bus.

 The specific output that is selected for the bus lines at any given time is determined from the binary

value of the selection variables S2, S1, and S0.
 The number along each output shows the decimal equivalent of the required binary selection.

 For example, the number along the output of DR is 3. The 16-bit outputs of DR are placed on the bus

lines when S2S1S0 = 011.

 The lines from the common bus are connected to the inputs of each register and the data inputs ofthe

memory.

 The particular register whose LD (load) input is enabled receives the data from the bus during

the next clock pulse transition.

 The memory receives the contents of the bus when its write input is activated.

 The memory places its 16-bit output onto the bus when the read input is activated and S2S1S0 = 111.

 Two registers, AR and PC, have 12 bits each since they hold a memory address.

 When the contents of AR or PC are applied to the 16-bit common bus, the four most significant bits

are set to 0's.

 When AR or PC receives information from the bus, only the 12 least significant bits are transferred

into the register.

 The input register INPR and the output register OUTR have 8 bits each.

 They communicate with the eight least significant bits in the bus.

 INPR is connected to provide information to the bus but OUTR can only receive information from the

bus.

 This is because INPR receives a character from an input device which is then transferred to AC.

 OUTR receives a character from AC and delivers it to an output device.

 Five registers have three control inputs: LD (load), INR (increment), and CLR (clear).

 This type of register is equivalent to a binary counter with parallel load and synchronous clear.

 Two registers have only a LD input.

 The input data and output data of the memory are connected to the common bus, but the memory

address is connected to AR.

 Therefore, AR must always be used to specify a memory address.

 The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets of inputs.

o One set of 16-bit inputs come from the outputs of AC.

o Another set of 16-bit inputs come from the data register DR.
o The result of an addition is transferred to AC and the end carry-out of the addition is

transferred to flip-flop E (extended AC bit).

o A third set of 8-bit inputs come from the input register INPR.

 The content of any register can be applied onto the bus and an operation can be performed in the

adder and logic circuit during the same clock cycle.

 For example, the two microoperations DRAC and AC DR can be executed at the same time.

 This can be done by placing the content of AC on the bus (with S2S1S0 = 100), enabling the LD

(load)input of DR, transferring the content of DR through the adder and logic circuit into AC, and

enabling the LD (load) input of AC, all during the same clock cycle.

3. Computer Instructions:

 The basic computer has three instruction code formats, as shown in Fig. 5-5. Each format has 16 bits.

 The operation code (opcode) part of the instruction contains three bits and the meaning of the

remaining 13 bits depends on the operation code encountered.

 A memory-reference instruction uses 12 bits to specify an address and one bit to specify the

addressing mode I.

 I is equal to 0 for direct address and to 1 for indirect address.
 The register-reference instructions are recognized by the operation code 1.11 with a 0 in the leftmostbit

(bit 15) of the instruction.

 A register-reference instruction specifies an operation on the AC register. So an operand from memory

is not needed. Therefore, the other 12 bits are used to specify the operation to be executed.

 An input—output instruction does not need a reference to memory and is recognized by the
operation code 111 with a 1 in the leftmost bit of the instruction.

 The remaining 12 bits are used to specify the type of input—output operation.

 The instructions for the computer are listed in Table 5-2.

 The symbol designation is a three-letter word and represents an abbreviation intended for

programmers and users.

 The hexadecimal code is equal to the equivalent hexadecimal number of the binary code used for the

instruction.

Instruction Set Completeness:

 A computer should have a set of instructions so that the user can construct machine language

programs to evaluate any function.

 The set of instructions are said to be complete if the computer includes a sufficient number of

instructions in each of the following categories:

o Arithmetic, logical, and shift instructions

o Data Instructions (for moving information to and from memory and processor registers)

o Program control or Brach

o Input and output instructions
 There is one arithmetic instruction, ADD, and two related instructions, complement AC(CMA) and

increment AC(INC). With these three instructions we can add and subtract binary numbers when

negative numbers are in signed-2's complement representation.

 The circulate instructions, CIR and CIL; can be used for arithmetic shifts as well as any

othertype of shifts desired.

 There are three logic operations: AND, complement AC (CMA), and clear AC(CLA). The AND

andcomplement provide a NAND operation.

 Moving information from memory to AC is accomplished with the load AC (LDA) instruction.

Storinginformation from AC into memory is done with the store AC (STA) instruction.

 The branch instructions BUN, BSA, and ISZ, together with the four skip instructions,

providecapabilities for program control and checking of status conditions.

 The input (INP} and output (OUT) instructions cause information to be transferred between the

computer and external devices.

4. Timing and Control:

 The timing for all registers in the basic computer is controlled by a master clock generator.

 The clock pulses are applied to all flip-flops and registers in the system, including the flip-flops

andregisters in the control unit.

 The clock pulses do not change the state of a register unless the register is enabled by a control

signal.

 The control signals are generated in the control unit and provide control inputs for the multiplexersin

the common bus, control inputs in processor registers, and microoperations for the accumulator.

 There are two major types of control organization:

o Hardwired control

o Microprogrammed control

 The differences between hardwired and microprogrammed control are

Hardwired control Microprogrammed control

 The control logic is implemented with gates,

flip-flops, decoders, and other digital

circuits.

 The control information is stored in a

control memory. The control memory is

programmed to initiate the required

sequence of microoperations.

 The advantage that it can be optimized to

produce a fast mode of operation.

 Compared with the hardwired control

operation is slow.

 Requires changes in the wiring among the

various components if the design has to be

modified or changed.

 Required changes or modifications can be

done by updating the microprogram in

control memory.

 The block diagram of the hardwired control unit is shown in Fig. 5-6.

 It consists of two decoders, a sequence counter, and a number of control logic gates.

 An instruction read from memory is placed in the instruction register (IR). It is divided into three

parts: The I bit, the operation code, and bits 0 through 11.

 The operation code in bits 12 through 14 are decoded with a 3 x 8 decoder. The eight outputs of

the decoder are designated by the symbols D0 through D7.
 Bit 15 of the instruction is transferred to a flip-flop designated by the symbol I.

 Bits 0 through 11 are applied to the control logic gates.

 The 4-bit sequence counter can count in binary from 0 through 15.

 The outputs of the counter are decoded into 16 timing signals T0 through T15.
 The sequence counter SC can be incremented or cleared synchronously.

 The counter is incremented to provide the sequence of timing signals out of the 4 x 16 decoder.

 As an example, consider the case where SC is incremented to provide timing signals T0, T1, T2, T3

andT4 in sequence. At time T4, SC is cleared to 0 if decoder output D3 is active.
 This is expressed symbolically by the statement

D3T4: SC0
 The timing diagram of Fig. 5-7 shows the time relationship of the control signals.

 The sequence counter SC responds to the positive transition of the clock.
 Initially, the CLR input of SC is active. The first positive transition of the clock clears SC to 0, which

inturn activates the timing signal T0 out of the decoder. T0 is active during one clock cycle.
 SC is incremented with every positive clock transition, unless its CLR input is active.

 This produces the sequence of timing signals T0, T1, T2, T3, T4and so on, as shown in the diagram.

 The last three waveforms in Fig.5-7 show how SC is cleared when D3T4 = 1.

 Output D3 from the operation decoder becomes active at the end of timing signal T2.

 When timing signal T4 becomes active, the output of the AND gate that implements the control

function D3T4 becomes active.
 This signal is applied to the CLR input of SC. On the next positive clock transition (the

onemarked T4 in the diagram) the counter is cleared to 0.

 This causes the timing signal T0 to become active instead of T5 that would have been active if SC were

incremented instead of cleared.

5. Instruction Cycle:

 A program residing in the memory unit of the computer consists of a sequence of instructions.

 The program is executed in the computer by going through a cycle for each instruction.

 Each instruction cycle in turn is subdivided into a sequence of sub cycles or phases.

 In the basic computer each instruction cycle consists of the following phases:

1. Fetch an instruction from memory.

2. Decode the instruction.

3. Read the effective address from memory if the instruction has an indirect address.

4. Execute the instruction.

 Upon the completion of step 4, the control goes back to step 1 to fetch, decode,

and execute the next instruction.

Fetch and Decode:

 Initially, the program counter PC is loaded with the address of the first instruction in the program.

 The sequence counter SC is cleared to 0, providing a decoded timing signal T0.

 The microoperations for the fetch and decode phases can be specified by the following register

transfer statements.

 Figure 5-8 shows how the first two register transfer statements are implemented in the bus system.

 To provide the data path for the transfer of PC to AR we must apply timing signal T0 to achieve the
following connection:

o Place the content of PC onto the bus by making the bus selection inputs S2, S1, S0 equal to 010.
o Transfer the content of the bus to AR by enabling the LD input of AR.

 In order to implement the second statement it is necessary to use timing signal T1 to provide the

following connections in the bus system.

o Enable the read input of memory.

o Place the content of memory onto the bus by making S2S1S0=111.

o Transfer the content of the bus to IR by enabling the LD input of IR.

o Increment PC by enabling the INR input of PC.
 Multiple input OR gates are included in the diagram because there are other control functions that

will initiate similar operations.

Determine the Type of Instruction:

 The timing signal that is active after the decoding is T3.

 During time T3, the control unit determine the type of instruction that was read from the memory.

 The flowchart of fig.5-9 shows the initial configurations for the instruction cycle and also how the

control determines the instruction cycle type after the decoding.

 Decoder output D7 is equal to 1 if the operation code is equal to binary 111.

 If D7=1, the instruction must be a register-reference or input-output type.

 If D7 = 0, the operation code must be one of the other seven values 000 through 110, specifying a

memory-reference instruction.

 Control then inspects the value of the first bit of the instruction, which is now available in flip-flop I.

 If D7 = 0 and I = 1, indicates a memory-reference instruction with an indirect address. So it is then

necessary to read the effective address from memory.

 If D7 = 0 and I = 0, indicates a memory-reference instruction with a direct address.

 If D7 = 1 and I = 0, indicates a register-reference instruction.

 If D7 = 01and I = 1, indicates an input-output instruction.

 The three instruction types are subdivided into four separate paths.

 The selected operation is activated with the clock transition associated with timing signal T3.

 This can be symbolized as follows:

Register-Reference Instructions:

 Register-reference instructions are recognized by the control when D7 = 1 and I=0.

 These instructions use bits 0 through 11 of the instruction code to specify one of 12 instructions.

 These 12 bits are available in IR (0-11).

 The control functions and microoperations for the register-reference instructions are listed in Table

5-3.

 These instructions are executed with the clock transition associated with timing variable T3.

 Control function needs the Boolean relation D7I’T3, which we designate for convenience by the

symbol r.

 By assigning the symbol Bi to bit i of IR, all control functions can be simply denoted by rBi.

 For example, the instruction CLA has the hexadecimal code 7800, which gives the binary equivalent

0111 1000 0000 0000. The first bit is a zero and is equivalent to I’.

 The next three bits constitute the operation code and are recognized from decoder output D7.

 Bit 11 in IR is 1 and is recognized from B11. The control function that initiates the microoperation

forthis instruction is D7I’T3 B11 = rB11.

 The execution of a register-reference instruction is completed at time T3.

 The sequence counter SC is cleared to 0 and the control goes back to fetch the next instruction with

timing signal T0.
 The first seven register-reference instructions perform clear, complement, circular shift, and

increment microoperations on the AC or E registers.

 The next four instructions cause a skip of the next instruction in sequence whena

stated condition is satisfied. The skipping of the instruction is achieved by

incrementing PC once again.

 The condition control statements must be recognized as part of the control conditions.

 The AC is positive when the sign bit in AC(15) = 0; it is negative when AC(15) = 1. The content of
AC iszero (AC = 0) if all the flip-flops of the register are zero.

 The HLT instruction clears a start-stop flip-flop S and stops the sequence counter from counting.

6. Memory-Reference Instructions:

 Table 5-4 lists the seven memory-reference instructions.

 The decoded output Di for i = 0, 1, 2, 3, 4, 5, and 6 from the operation decoder that belongs to each
instruction is included in the table.

 The effective address of the instruction is in the address register AR and was placed there during

timing signal T2 when I= 0, or during timing signal T3 when I = 1.

 The execution of the memory-reference instructions starts with timing signal T4.

 The symbolic description of each instruction is specified in the table in terms of register transfer

notation.

AND to AC:

 This is an instruction that performs the AND logic operation on pairs of bits in AC and the

memoryword specified by the effective address.

 The result of the operation is transferred to AC.

 The microoperations that execute this instruction are:

ADD to AC:

 This instruction adds the content of the memory word specified by the effective address to the valueof

AC.

 The sum is transferred into AC and the output carry Cout is transferred to the E (extended

accumulator) flip-flop.

 The microoperations needed to execute this instruction are

LDA: Load to AC

 This instruction transfers the memory word specified by the effective address to AC.

 The microoperations needed to execute this instruction are

STA: Store AC

 This instruction stores the content of AC into the memory word specified by the effective address.

 Since the output of AC is applied to the bus and the data input of memory is connected to the bus,

we can execute this instruction with one microoperation.

BUN: Branch Unconditionally

 This instruction transfers the program to the instruction specified by the effective address.

 The BUN instruction allows the programmer to specify an instruction out of sequence and we say

that the program branches (or jumps) unconditionally.

 The instruction is executed with one microoperation:

BSA: Branch and Save Return Address

 This instruction is useful for branching to a portion of the program called a subroutine or procedure.

 When executed, the BSA instruction stores the address of the next instruction in sequence (which is

available in PC) into a memory location specified by the effective address.

 The effective address plus one is then transferred to PC to serve as the address of the first

instruction in the subroutine.

 This operation was specified with the following register transfer:

 A numerical example that demonstrates how this instruction is used with a subroutine is shown in

Fig. 5-10.

 The BSA instruction is assumed to be in memory at address 20.

 The I bit is 0 and the address part of the instruction has the binary equivalent of 135.

 After the fetch and decode phases, PC contains 21, which is the address of the next instruction in the

program (referred to as the return address). AR holds the effective address 135.

 This is shown in part (a) of the figure.

 The BSA instruction performs the following numerical operation:

 The result of this operation is shown in part (b) of the figure.

 The return address21 is stored in memory location 135 and control continues with the subroutine

program starting from address 136.

 The return to the original program (at address 21) is accomplished by means of an indirect BUN

instruction placed at the end of the subroutine.

 When this instruction is executed, control goes to the indirect phase to read the effective address at

location 135, where it finds the previously saved address 21.

 When the BUN instruction is executed, the effective address 21 is transferred to PC.

 The next instruction cycle finds PC with the value 21, so control continues to execute the instruction

at the return address.

 The BSA instruction must be executed with a sequence of two microoperations:

ISZ: Increment and Skip if Zero

 This instruction increment the word specified by the effective address, and if the incremented valueis

equal to 0, PC is incremented by 1 to skip the next instruction in the program.

 Since it is not possible to increment a word inside the memory, it is necessary to read the word into

DR, increment DR, and store the word back into memory.

 This is done with the following sequence of microoperations:

Control Flowchart:

 A flowchart showing all microoperations for the execution of the seven memory-reference

instructions is shown in Fig. 5.11.

7. Input-Output and Interrupt:

 Instructions and data stored in memory must come from some input device.

 Computational results must be transmitted to the user through some output device.
 To demonstrate the most basic requirements for input and output communication, we will use as an

illustration a terminal unit with a keyboard and printer.

Input-Output Configuration:

 The terminal sends and receives serial information.

 Each quantity of information has eight bits of an alphanumeric code.

 The serial information from the keyboard is shifted into the input register INPR.

 The serial information for the printer is stored in the output register OUTR.

 These two registers communicate with a communication interface serially and with the AC in parallel.

 The input—output configuration is shown in Fig. 5-12.

 The input register INPR consists of eight bits and holds alphanumeric input information.

 The 1-bit input flag FGI is a control flip-flop.

 The flag bit is set to 1 when new information is available in the input device and is cleared

to 0 when the information is accepted by the computer.

 The output register OUTR works similarly but the direction of information flow is reversed.

 Initially, the output flag FGO is set to 1.

 The computer checks the flag bit; if it is 1, the information from AC is transferred in parallel to
OUTRand FGO is cleared to 0.

 The output device accepts the coded information, prints the corresponding character, and when the

operation is completed, it sets FGO to 1.

Input-Output Instructions:

 Input and output instructions are needed for transferring information to and from AC register, for

checking the flag bits, and for controlling the interrupt facility.

 Input-output instructions have an operation code 1111 and are recognized by the control when D7 =1
and I = 1.

 The remaining bits of the instruction specify the particular operation.

 The control functions and microoperations for the input-output instructions are listed in Table 5-5.

 These instructions are executed with the clock transition associated with timing signal T3.

 Each control function needs a Boolean relation D7IT3, which we designate for convenience by the
symbol p.

 The control function is distinguished by one of the bits in IR (6-11).

 By assigning the symbol Bi to bit i of IR, all control functions can be denoted by pBi for i = 6

though11.

 The sequence counter SC is cleared to 0 when p = D7IT3 = 1.

 The last two instructions set and clear an interrupt enable flip-flop IEN.

Program Interrupt:

 The computer keeps checking the flag bit, and when it finds it set, it initiates an information transfer.

 The difference of information flow rate between the computer and that of the input—output device

makes this type of transfer inefficient.

 An alternative to the programmed controlled procedure is to let the external device inform the

computer when it is ready for the transfer.

 In the meantime the computer can be busy with other tasks. This type of transfer uses the interrupt

facility.

 While the computer is running a program, it does not check the flags.

 When a flag is set, the computer is momentarily interrupted from the current program.

 The computer deviates momentarily from what it is doing to perform of the input or output transfer.

 It then returns to the current program to continue what it was doing before the interrupt.

 The interrupt enable flip-flop IEN can be set and cleared with two instructions.

o When IEN is cleared to 0 (with the IOF instruction), the flags cannot interrupt the computer.

o When IEN is set to (with the ION instruction), the computer can be interrupted.

 The way that the interrupt is handled by the computer can be explained by means of the flowchart of

Fig. 5-13.

 An interrupt flip-flop R is included in the computer. When R = 0, the computer goes through an

instruction cycle.

 During the execute phase of the instruction cycle IEN is checked by the control.
 If it is 0, it indicates that the programmer does not want to use the interrupt,so control continues

with the next instruction cycle.

 If IEN is 1, control checks the flag bits. If both flags are 0, it indicates that neither the input nor the
output registers are ready for transfer of information. In this case, control continues

with the next instruction cycle.

 If either flag is set to 1 while 1EN = 1, flip-flop R is set to 1. At the end of the execute phase,

controlchecks the value of R, and if it is equal to 1, it goes to an interrupt cycle instead of an

instruction cycle.

Interrupt cycle:

 The interrupt cycle is a hardware implementation of a branch and save return address operation.

 The return address available in PC is stored in a specific location.

 This location may be a processor register, a memory stack, or a specific memory location.

 An example that shows what happens during the interrupt cycle is shown in Fig. 5-14.

 When an interrupt occurs and R is set to 1 while the control is executing the instruction at address

255.

 At this time, the returns address 256 is in PC.

 The programmer has previously placed an input—output service program in memory starting from

address 1120 and a BUN 1120 instruction at address 1. This is shown in Fig. 5.14(a).

 When control reaches timing signal T0and finds that R = 1, it proceeds with the interrupt cycle.

 The content of PC (256) is stored in memory location 0, PC is set to 1, and R is cleared to 0.

 The branch instruction at address 1 causes the program to transfer to the input—output service

program at address 1120.

 This program checks the flags, determines which flag is set, and then transfers the required inputor

output information.

 Once this is done, the instruction ION is executed to set IEN to 1 (to enable further interrupts), and
the program returns to the location where it was interrupted.

 This is shown in Fig. 5-14(b).

Control memory

Address Sequencing

Microprogram Example

Design of Control Unit

UNIT-2
Microprogrammed Control

What is a microprogram?

A sequence of micro instructions is a microprogram.

What is a control unit?

The function of the control unit in a digital computer is to initiate sequence of microoperations.

Control unit can be implemented in two ways

Hardwired control

Microprogrammed control

Micro-operations

Control unit generates signals to
execute micro-operations

Program

Sequence of instructions

These signals are Sequence of
microprograms

Hardwired Control:

When the control signals are generated by hardware using conventional logic design techniques, the
control unit is said to be hardwired.

The key characteristics are

High speed of operation

Expensive

Relatively complex

No flexibility of adding new

instructions Microprogrammed Control:

Control information is stored in control memory.

Control memory is programmed to initiate the required sequence of micro-operations. The

key characteristics are

Speed of operation is low when compared with hardwired

Less complex

Less expensive

Flexibility to add new instructions

Control Memory

The control function that specifies a microoperation is called as control variable.

When control variable is in one binary state, the corresponding microoperation is executed. For

the other binary state the state of registers does not change.

The active state of a control variable may be either 1 state or the 0 state, depending on the
application.

Example;

For bus-organized systems the control signals that specify microoperations are groups of bits that
select the paths in multiplexers, decoders, and arithmetic logic units.

Control Word:

control word.

All control words can be programmed to perform various operations on the components of the
system.

Microprogram control unit:

A control unit whose binary control variables are stored in memory is called a microprogram control
unit.

The control word in control memory contains within it a microinstruction.

The microinstruction specifies one or more micro-operations for the system. A

sequence of microinstructions constitutes a microprogram.

The control unit consists of control memory used to store the microprogram.

Control memory is a permanent i.e., read only memory (ROM).

The general configuration of a micro-programmed control unit organization is shown as block
diagram below.

The control memory is ROM so all control information is permanently stored.

The control memory address register (CAR) specifies the address of the microinstruction and the control data register
(CDR) holds the microinstruction read from memory.

The next address generator is sometimes called a microprogram sequencer. It is used to generate the next micro
instruction address.

The location of the next microinstruction may be the one next in sequence or it may be located somewhere else in the
control memory.

So it is necessary to use some bits of the present microinstruction to control the generation of the address of the
microinstruction.

Sometimes the next address may also be a function of external input conditions.

The control data register holds the present microinstruction while next address is computed and read from memory. The

data register is sometimes called a pipeline register.

A computer with a microprogrammed control unit will have two separate memories: a

main memory (RAM)

control memory (ROM)

The microprogram consists of microinstructions that specify various internal control signals for
execution of register microoperations

These microinstructions generate the microoperations to:

fetch the instruction from main memory

evaluate the effective address

execute the operation

return control to the fetch phase for the next instruction

Addressing sequence

Microinstructions are stored in control memory in groups, with each group specifying a routine.

Each computer instruction has its own microprogram routine to generate the microoperations.

The hardware that controls the address sequencing of the control memory must be capable of sequencing the
microinstructions within a routine and be able to branch from one routine to another

 Steps the control must undergo during the execution of a single computer instruction are as follows Initial

address is loaded into the control address register(CAR) when power is turned on in the computer.
This address is usually the address of the first microinstruction that activates the instruction fetch routine.

At the end of the fetch routine instruction is placed in the instruction register- IR

The control memory then goes through the routine to determine the effective address of the operand with the
help of mode bits and branch micro instructions

At the end of this routine Address register AR holds operand address

The next step is to generate the microoperations that execute the instruction fetched from memory by considering
the opcode and applying a mapping process.

The transformation of the instruction code bits to an address in control memory where the routine of
instruction located is referred to as mapping process.

After execution, control must return to the fetch routine by executing an unconditional branch

In brief the address sequencing capabilities required in a control memory are:

1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit conditions.

3. A mapping process from the bits of the instruction to an address for control memory.

4. A facility for subroutine call and return.

Selection of address for control memory
The microinstruction in control memory contains a set of bits to

initiate microoperations in computer registers and other bits to
specify the method by which the next address is obtained.

In the figure four different paths form which the control address

register (CAR) receives the address.

The incrementer increments the content of the control register

address register by one, to select the next microinstruction in

sequence.

Branching is achieved by specifying the branch address in one of

the fields of the microinstruction.

Conditional branching is obtained by using part of the

microinstruction to select a specific status bit in order to determine its

condition.

An external address is transferred into control memory via a mapping

logic circuit.

The return address for a subroutine is stored in a special register,

that value is used when the micoprogram wishes to return from the

subroutine.

Conditional branching

Conditional branching is obtained by using part of the microinstruction to select a specific status bit in order
to determine its condition.

The status conditions are special bits in the system that provide parameter information such as the carry-out of
an adder, the sign bit of a number, the mode bits of an instruction, and i/o status conditions.

The status bits, together with the field in the microinstruction that specifies a branch address, control the
branch logic.

The branch logic tests the condition, if met then branches, otherwise, increments the CAR.

Conditional branching can be implemented with a multiplexer. If there are 8 status bit conditions, then 3 bits in
the microinstruction are used to specify any one of the condition and they provide the selection variables for
the multiplexer.

If the selected status bit is in 1 state, the output of multiplexer is 1, otherwise it is 0.

A 1 output in the multiplexer generates a control signal to transfer the branch address from the microinstruction
into the control address register.

A 0 output in the multiplexer causes the address register to be incremented. For

unconditional branching, fix the value of one status bit to be 1.

Reference to this bit causes the branch address to be loaded into the control address register
unconditionally.

Mapping of instructions

A special type of branch exists when a microinstruction specifies a branch to the first word in control
memory where a microprogram routine is located.

The status bits for this type of branch are the bits in the opcode.

Assume an opcode of four bits and a control memory of 128 locations. The mapping process converts the 4- bit
opcode to a 7-bit address for control memory shown in below figure.

Mapping consists of placing a 0 in the most significant bit of the address, transferring the four operation
code bits, and clearing the two least significant bits of the control address register.

This provides for each computer instruction a microprogram routine with a capacity of four
microinstructions.

The mapping function is implemented by integrated circuit called programmable logic device

Microprogram example
The process of code generation for the control memory is called
microprogramming.

The block diagram of the computer configuration is shown in the figure. Two

memory units:

1. Main memory stores instructions and data

2. Control memory stores microprogram

Four processor registers

1. Program counter PC

2. Address register AR

3. Data register DR

4. Accumulator register - AC

Two control unit registers

1. Control address register CAR

2. Subroutine register SBR

Transfer of information among registers in the processor is through
MUXs rather than a bus.

DR receives information from AC,PC or memory.

AR can receive information from PC or DR

Computer instruction format

Three fields for an instruction:

1. 1-bit field for direct/indirect addressing

2. 4-bit opcode

3. 11-bit address field

Micro instruction format

The microinstruction format is composed of 20 bits divided into four parts
Three fields F1, F2, and F3 specify microoperations for the
computer [3 bits each]

The CD field selects status bit conditions [2 bits]

The BR field specifies the type of branch to be used [2 bits]
The AD field contains a branch address [7 bits] because control
memory has 128 words
Each of the three microoperation fields can specify one of seven
possibilities.
No more than three microoperations can be chosen for a
microinstruction.

If fewer than three are needed, the code 000 = NOP.
The three bits in each field are encoded to specify seven distinct
microoperations listed in below table.
The condition field (CD) is two bits to specify four status bit
conditions .

The branch field (BR) consists of two bits and is used with the
address field to choose the address of the next microinstruction.

Symbolic microinstructions

Different symbols can be used to construct the micro instructions in symbolic form.

Each line of an assembly language microprogram defines a symbolic microinstruction and is divided into five parts

 Lable

 Microoperations

 CD

BR

AD

1. The label field may be empty or it may specify a symbolic address. Terminate with a colon (:).

2. The microoperations field consists of 1-3 symbols, separated by commas. Only one symbol from each field. If NOP,
then translated to 9 zeros

3. The condition field specifies one of the four conditions U,I,S,Z.

4. The branch field has one of the four branch symbols JMP,CALL,RET,MAP

5. The address field has three formats

a. A symbolic address must also be a label

b. The symbol NEXT to designate the next address in sequence

c. Empty if the branch field is RET or MAP and is converted to 7 zeros

The symbol ORG defines the origin i;e the first address of a microprogram routine.

Eg; ORG 64 places first microinstruction at control memory 1000000 which is equivalent to decimal number 64.

Fetch routine

The control memory has 128 locations, each one is 20 bits.

The first 64 locations are occupied by the routines for the 16
instructions, addresses 0-63.

the fetch routine starts at address 64.

The fetch routine requires the following three
microinstructions at locations 64-66.

The microinstructions needed for fetch routine are:

The address of instruction is transferred from PC to AR and
the instruction is read from memory into DR and PC is
incremented.

The address part is transferred to AR and the control is
transferred to one of 16 routines by mapping the operation
code part of the instruction from DR into CAR.

Using assembly language conventions like above we can write
symbolic micro programs as shown in the table.

Design of control unit

The control memory out of each subfield must be decoded to provide the
distinct microoperations.

The outputs of the decoders are connected to the appropriate inputs in the
processor unit.

The figure shows the three decoders and some of the connections that
must be made from their outputs.

The three fields of the microinstruction in the output of control memory
are decoded with a 3x8 decoder to provide eight outputs.

Each of the output must be connected to proper circuit to initiate the
corresponding microoperation.

When F1 = 101 (binary 5), the next pulse transition transfers the content
of DR (0-10) to AR.

Similarly, when F1= 110 (binary 6) there is a transfer from PC to AR
(symbolized by PCTAR).

As shown in Fig, outputs 5 and 6 of decoder F1 are connected to the
load input of AR so that when either one of these outputs is active,
information from the multiplexers is transferred to AR.

The multiplexers select the information from DR when output 5 is active
and from PC when output 5 is inactive.

The transfer into AR occurs with a clock transition only when output 5 or
output 6 of the decoder is active.

For the arithmetic logic shift unit the control signals are instead of
coming from the logical gates, now these inputs will now come from the
outputs of AND, ADD and DRTAC respectively.

Microprogram
sequencer

The basic components of a microprogrammed control unit are
the control memory and the circuits that select the next
address.

The address selection is called a microprogram sequencer.

The purpose of a microprogram sequencer is to present an
address to the control memory so that a microinstruction may
be read and executed.

The next-address logic of the sequencer determines the
specific address to be loaded into the control address register.

The block diagram of the microprogram sequencer is shown in
the figure.

The control memory is included in the diagram to show the
interaction between the sequencer and the memory attached to
it.

There are two multiplexers in the circuit.

1. The first multiplexer selects an address from one of four
sources and routes it into control address register CAR.

2. The second multiplexer tests the value of a selected status
bit and the result of the test is applied to an input logic
circuit.

The output from CAR provides the address for the control
memory.

The content of CAR is incremented and applied to one of the
multiplexer inputs and to the subroutine register SBR.

The other three inputs to multiplexer come from

1. The address field of the present microinstruction

2. From the out of SBR

3. From an external source that maps the instruction

The CD (condition) field of the microinstruction selects one of
the status bits in the second multiplexer.

If the bit selected is equal to 1, the T variable is equal to 1;
otherwise, it is equal to 0.

The T value together with two bits from the BR (branch) field
goes to an input logic circuit.

The input logic in a particular sequencer will determine the
type of operations that are available in the unit.

The input logic circuit in above figure has three inputs I0, I1,
and T, and three outputs, S0, S1, and L.

Variables S0 and S1 select one of the source addresses for
CAR. Variable L enables the load input in SBR.

The binary values of the selection variables determine the path
in the multiplexer.

For example, with S1,S0 = 10, multiplexer input number 2 is
selected and establishes transfer path from SBR to CAR.

Inputs I1 and I0 are identical to the bit values in the

BR field.

The bit values for S1 and S0 are determined from

the stated function and the path in the multiplexer

that establishes the required transfer.

The subroutine register is loaded with the

incremented value of CAR during a call

microinstruction (BR = 01) provided that the status

bit condition is satisfied (T = 1).

The truth table can be used to obtain the simplified

Boolean functions for the input logic circuit:

Central Processing Unit
The main part of the computer that performs the bulk of
data-processing operations is called the central processing
unit and is referred to as the CPU.

The CPU is made up of three major parts, as shown in Fig

1. The register set stores intermediate data used during the
execution of the instructions.

2. The arithmetic logic unit (ALU) performs the
required microoperations for executing the
instructions.

3. The control unit supervises the transfer of information
among the registers and instructs the ALU as to which
operation to perform.

General register organization

Memory locations are needed for storing pointers, counters, return address, temporary results etc.

Referring to these memory locations is very time consuming because memory access is the most
time consuming operation in a computer.

Therefore it is convenient to store these intermediate values in processor registers.

When there are many registers in the system they are connected through a common bus system.

The registers communicate with each other for data transfer as well as for performing some micro
operations.

Hence it is necessary to provide a common unit that performs arithmetic, logic and shift operations in
the processor.

A bus organization for 7 CPU registers is shown in the figure.

The outputs of each register is connected to the two

multiplexers(MUX) to form the two buses A and B.

The selection lines in each multiplexer select one register or the input

data for the particular bus.

The A and B buses form the inputs to a common arithmetic logic

unit (ALU).

The operation selected in the ALU determines the arithmetic or

logic micro operation that is to be performed.

The result of micro operation goes into the inputs of all the registers.

The register that receives the information is selected by a

decoder.

The decoder activates one of the register load inputs, thus

providing transfer path between the data in the output bus and the

inputs of the selected destination register.

The control unit that operates the CPU bus system directs the

information flow through the registers and ALU by selecting the

various components in the system.

Eg; to perform the following operation.

 +

The control must provide binary selection variables to
the following selector inputs.

1. MUX A selector (SELA): to place the contents
of into bus A.

2. MUX B selector (SELB) : to place the content of

 into bus B.

3. ALU operation selector (OPR): to provide
the arithmetic addition A+B.

4. Decoder destination selector(SELD): to transfer the
content of the output bus into R1.

The four control selection variables are generated in the control unit and must be available at the
beginning of a clock cycle.

The data from the two source registers propagate through the gates in the multiplexers and the ALU,
to the output bus, and onto the input of the destination register, all during the clock cycle interval.

Then , when the next clock transition occurs, the binary information from the output bus is
transferred into .

To achieve a fast response time, the ALU is constructed with high-speed circuits.

The buses are implemented with multiplexers or three-state gates

Control word

Control word is defined as a word whose individual bits represent various control signals.

There are 14 selection inputs in the unit, and their combined value specifies a control word. The

14 bit control word is defined in the following fig, it consists of 4 fields.

Three fields contain 3 bits each and last field contains 5 bits.

The three bits of SELA select a source register for the A input of the ALU.

The three bits of SELB select a source register for the B input of the ALU.

The three bits of SELD select a destination register using the decoder and its seven load outputs. The

five bits of OPR select one of the operations in the ALU.

The 14 bit control word when applied to the selection inputs specify a particular microoperation.

The encoding of the register selections is specified in table

The 3-bit binary code listed in the first column of the table specifies the
binary code for each of the three fields.

The register selected by fields SELA, SELB, and SELD is the one whose
decimal number is equivalent to the binary number in the code. When SELA
or SELB is 000, the corresponding multiplexer selects the external input data.

When SELD = 000, no destination register is selected but the contents of the
output bus are available in the external output.

The ALU provides arithmetic and logic operations.

The CPU must also provide shift operations. The shifter may be placed in the
input of the ALU to provide a preshift capability, or at the output of the
ALU to provide postshifting capability.

In some cases, the shift operations are included with the ALU.

The encoding of the ALU operations for the CPU is shown in the following
table.

The OPR field has 5 bits and each operation is designated with a symbolic
name.

Examples of microoperations

A control word of 14 bits is needed to specify a microoperation in the
CPU. The control word for a given microoperation can be derived from
the selection variables.

For example, the subtract microoperation given by the statement

R1 R2 - R3

specifies R2 for the A input of the ALU, R3 for the B input of the ALU,
R1 for the destination register, and an ALU operation to subtract A - B.

Thus the control word is specified by the four fields and the
corresponding binary value for each field is obtained from the encoding
listed in Tables 1 and 2.

The binary control word for the subtract microoperation is

010 011 001 00101 and is obtained as follows:

The control word for this microoperation and a few others are listed in
Table 3.

The increment and transfer microoperations do not use the B input of the
ALU.

For these cases, the B field is marked with a dash. We assign 000 to any
unused field when formulating the binary control word, although any other
binary number may be used.

To place the content of a register into the output terminals we place the
content of the register into the A input of the ALU, but none of the registers
are selected to accept the data.

The ALU operation TSFA places the data from the register, through the
ALU, into the output terminals.

The direct transfer from input to output is accomplished with a control word

of all 0's (making the B field 000).

A register can be cleared to 0 with an exclusive-OR operation. This is
because x x = 0.

It is apparent from these examples that many other microoperations can be
generated in the CPU.

The most efficient way to generate control words with a large number of bits
is to store them in a memory unit.

A memory unit that stores control words is referred to as a control memory.

By reading consecutive control words from memory, it is possible to initiate
the desired sequence of microoperations for the CPU.

This type of control is referred to as microprogrammed control.

Instruction formats
An instruction is a group of bits that instructs the computer to do some operation. These bits are arranged in some
instruction code format.

Control unit in the CPU will interpret each instruction code and provide the necessary control functions
needed to process the instruction.

A computer will usually have a variety of instruction code formats.

The format of an instruction is represented in a rectangular box symbolizing the bits of the instruction as they
appear in memory words or in a control register.

The bits of the instruction are divided into groups called fields.

The most common fields found in instruction formats are:

1. An operation code field that specifies the operation to be perform

2. An address field that designates a memory address or a processor register.

3. A mode field that specifies the way the operand or the effective address is determined.

Computers may have instructions of several different lengths containing varying number of addresses.

The number of address fields in the instruct format of a computer depends on the internal organization of
its registers.

Most computers have one of three types of CPU organizations:

1. Single accumulator organization.

2. General register organization.

3. Stack organization.

Single Accumulator Organization:

In an accumulator type organization all the operations are performed with an implied
accumulator register.

The instruction format in this type of computer uses one address field.

For example, the instruction that specifies an arithmetic addition defined by an assembly
language instruction as

ADD X here X is the address of the operand.

The ADD instruction in this case results in the operation

AC AC +M[X].

AC is the accumulator register and M[X] symbolizes the memory word located at address X

General register organization:

The instruction format in this type of computer needs three register address fields.

Eg 1; the instruction for an arithmetic addition may be written in an assembly language as

ADD R1, R2, R3

This denote the operation R1 R2 + R3.

The number of address fields in the instruction can be reduced from three to two if the destination
register is the same as one of the source registers.

Eg2; Thus the instruction ADD R1, R2 would denote the operation

R1 R1 + R2.

Only register addresses for R1 and R2 need be specified in this instruction.

General register-type computers employ two or three address fields in their instruction
format.

Each address field may specify a processor register or a memory word.

An instruction symbolized by ADD R1, X would specify the operation R1 R1 +

M[X]. It has two address fields, one for register R1 and the other for the memory

address X.

Stack organization:
The stack-organized CPU has PUSH and POP instructions which require an address field.

Thus the instruction PUSH X will push the word at address X to the top of the stack.

The stack pointer is updated automatically.

Operation-type instructions do not need an address field in stack-organized computers.

This is because the operation is performed on the two items that are on top of the stack.

The instruction ADD in a stack computer consists of an operation code only with no
address field.

This operation has the effect of popping the two top numbers from the stack, adding the numbers,
and pushing the sum into the stack.

There is no need to specify operands with an address field since all operands are implied to
be in the stack.

Most computers fall into one of the three types of organizations.

Some computers combine features from more than one organizational structure.

To illustrate The influence of the number of addresses on computer programs, we will evaluate the arithmetic
statement

X= (A+B) * (C+D)

using zero, one, two, or three address instructions.

using the symbols ADD, SUB, MUL and DIV for four arithmetic

operations. MOV for the transfer type operations;

LOAD and STORE for transfer to and from memory and AC register.

Assuming that the operands are in memory addresses A, B, C, and D and the result must be stored in memory at
address X and also the CPU has general purpose registers R1, R2, R3 and R4.

Three Address Instructions:

Three-address instruction formats can use each address field to specify either a processor register or
a memory operand.

The program assembly language that evaluates X = (A+B) * (C+D) is shown below, together with
comments that explain the register transfer operation of each instruction.

The symbol M [A] denotes the operand at memory address symbolized by A.

The advantage of the three-address format is that it results in short programs when evaluating
arithmetic expressions.

The disadvantage is that the binary-coded instructions require too many bits to specify three
addresses.

Two Address Instructions:

Two-address instructions formats use each address to specify either a processor register or memory word. The

program to evaluate X = (A+B) * (C+D) is as follows

The MOV instruction moves or transfers the operands to and from memory and processor registers.

The first symbol listed in an instruction is assumed be both a source and the destination where the result of
the operation transferred.

One Address Instructions:

One-address instructions use an implied accumulator (AC) register for all data manipulation.

AC contains the result of all operations.

The program to evaluate X=(A+B) * (C+D) is

All operations are done between the AC register and a memory operand.

T is the address of a temporary memory location required for storing the intermediate result.

Zero Address Instructions:

A stack-organized computer does not use an address field for the instructions ADD and MUL.

The PUSH and POP instructions, however, need an address field to specify the operand that communicates
with the stack.

The following program shows how X = (A+B) * (C+D) will be written for a stack-organized computer. (TOS
stands for top of stack).

Addressing modes

Operands are chosen during program execution depending on the addressing mode of the instruction. Computers

use addressing mode techniques to

1. To provide facilities such as pointers to memory, counters for loop control, indexing of data, and program relocation.

2. To reduce the number of bits in the addressing field of the instruction

Types of addressing modes

Implied Mode

Immediate Mode

Register Mode

Register Indirect Mode

Autoincrement or Autodecrement Mode

Direct Address Mode

Indirect Address Mode

Relative Address Mode

Indexed Addressing Mode

Base Register Addressing Mode

Most addressing modes modify the address field of the instruction; there are two modes that need no address field at all.
These are implied and immediate modes

 Implied Mode:

In this mode the operands are specified in the definition of the instruction.

For example, the instruction "complement accumulator" is an implied-mode instruction
because the operand in the accumulator register is implied in the definition of the
instruction.

All register reference instructions that use an accumulator are implied mode instructions.

Zero address in a stack organization computer is implied mode instructions.

 Immediate Mode:

In this mode the operand is specified in the instruction itself.

In other words an immediate-mode instruction has an operand rather than an address field.

Immediate-mode instructions are useful for initializing registers to a constant value.

Register Mode:

When the address specifies a processor register, the instruction is said to be in the register mode. In

this mode the operands are in registers that reside within the CPU.

The particular register is selected from a register field in the instruction.

Register Indirect Mode:

In this mode the instruction specifies a register in CPU whose contents give the address of the operand in
memory.

In other words, the selected register contains the address of the operand rather than the operand itself.

The advantage of a register indirect mode instruction is that the address field of the instruction uses few bits
to select a register than would have been required to specify a memory address directly.

Auto-increment or Auto-Decrement Mode:

This is similar to the register indirect mode except that the register is incremented or decremented after (or
before) its value is used to access memory.

The address field of an instruction is used by the control unit in the CPU to obtain the operand from
memory.

Sometimes the value given in the address field is the address of the operand, but sometimes it is just an
address from which the address of the operand is calculated.

The basic two mode of addressing used in CPU are direct and indirect address mode.

Direct Address Mode:

In this mode the effective address is equal to the address part of the instruction.

The operand resides in memory and its address is given directly by the address field of the instruction. In

a branch-type instruction the address field specifies the actual branch address.

Indirect Address Mode:

In this mode the address field of the instruction gives the address where the effective address is stored in memory.

Control fetches the instruction from memory and uses its address part to access memory again to read the effective
address.

A few addressing modes require that the address field of the instruction be added to the content of a
specific register in the CPU.

The effective address in these modes is obtained from the following computation:

Effective address =address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an index register, or a base register.

We have a different addressing mode which is used for a different application.

Relative Address Mode:

In this mode the content of the program counter is added to the address part of the instruction in order to
obtain the effective address.

Indexed Addressing Mode:

In this mode the content of an index register is added to the address part of the instruction to obtain the effective
address.

An index register is a special CPU register that contains an index value.

Base Register Addressing Mode:

In this mode the content of a base register is added to the address part of the instruction to obtain the
effective address.

This is similar to the indexed addressing mode except that the register is now called a base register instead of an
index register.

Example
To show the differences between the various modes, we will

show the effect of the addressing modes on the instruction
defined in Fig

The two-word instruction at address 200 and 201 is a "load to
AC" instruction with an address field equal to 500.

The first word of the instruction specifies the operation code and
mode, and the second word specifies the address part.

PC has the value 200 for fetching this instruction. The content
of processor register R1 is 400, and the content of an index
register XR is 100.

AC receives the operand after the instruction is executed

In the direct address mode the effective address is the address
part of the instruction 500 and the operand to be loaded into AC
is 800.

In the immediate mode the second word of the instruction is
taken as the operand rather than an address, so 500 is loaded into
AC

In the indirect mode the effective address is stored in memory at
address 500. Therefore, the effective address is 800 and the
operand is 300.

In the relative mode the effective address is 500 + 202 =702
and the operand is 325. (the value in PC after the fetch phase
and during the execute phase is 202.)

In the index mode the effective address is XR+ 500 = 100 +
500 = 600 and the operand is 900.

In the register mode the operand is in R1 and 400 is loaded
into AC.

In the register indirect mode the effective address is 400,
equal to the content of R1 and the operand loaded into AC
is 700.

The auto-increment mode is the same as the register
indirect mode except that R1 is incremented to 401 after the
execution of the instruction.

The auto-decrement mode decrements R1 to 399 prior to
the execution of the instruction. The operand loaded into
AC is now 450.

Data Transfer and Manipulation

Most computer instructions can be classified into three
categories:

1. Data transfer instructions

2. Data manipulation instructions

3. Program control instructions

 Data Transfer Instructions:

Data transfer instructions move data from one place in the
computer to another without changing the data content.

The most common transfers are between memory and
processor registers, between processor registers and
input or output, and between the processor registers
themselves.

Table gives a list of eight data transfer instructions used in
many computers.

 Data Manipulation Instructions:

Data manipulation instructions perform operations on data and
provide the computational capabilities for the computer.

The data manipulation instructions in a typical computer are usually
divided into three basic types:

1. Arithmetic instructions

2. Logical and bit manipulation instructions

3. Shift instructions

Arithmetic instructions

The four basic arithmetic operations are addition, subtraction,
multiplication and division.

Most computers provide instructions for all four operations.

Some small computers have only addition and possibly subtraction
instructions.

The multiplication and division must then be generated by mean
software subroutines.

A list of typical arithmetic instructions is given in Table 8-7.

Logical and bit manipulation instructions

Logical instructions perform binary operations on strings of
bits store, registers.

They are useful for manipulating individual bits or a group of
that represent binary-coded information.

The logical instructions consider each bit of the operand
separately and treat it as a Boolean variable.

By proper application of the logical instructions it is possible
to change bit values, to clear a group of bits, or to insert new
bit values into operands stored in register memory words.

Some typical logical and bit manipulation instructions are
listed in Table.

Shift Instruction

Shifts are operations in which the bits of a word are
moved to the left or right.

The bit shifted in at the end of the word determines the
type of shift used.

Shift instructions may specify logical shifts,
arithmetic shifts, or rotate-type operations.

In either case the shift may be to the right or to the left.

Table 8-9 lists four types of shift instructions

Program control

Program control instructions specify conditions for altering the content of the
program counter.

The change in value of the program counter as a result of the execution of a
program control instruction causes a break in the sequence of instruction
execution.

This instruction provides control over the flow of program execution and a
capability for branching to different program segments.

Some typical program control instructions are listed in Table

Branch and jump instructions may be conditional or unconditional.

An unconditional branch instruction causes a branch to the specified
address without any conditions.

The conditional branch instruction specifies a condition such as branch if
positive or branch if zero.

The skip instruction does not need an address field and is therefore a zero-
address instruction.

A conditional skip instruction will skip the next instruction if the condition
is met. This is accomplished by incrementing program counter.

The call and return instructions are used in conjunction with subroutines.

The compare instruction forms a subtraction between two operands, but the
result of the operation not retained. However, certain status bit conditions
are set as a result of operation.

Similarly, the test instruction performs the logical AND of two operands and
updates certain status bits without retaining the result or changing the
operands.

Status Bit Conditions:

The ALU circuit in the CPU have status register for storing the
status bit conditions.

Status bits are also called condition-code bits or flag bits.

Following Figure shows block diagram of an 8-bit ALU with
a 4-bit status register

The four status bits are symbolized by C, S, Z, and V. The
bits are set or cleared as a result of an operation performed in
the ALU.

Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared
to 0 if the carry is 0.

S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to 0
if the bit is 0.

Bit Z (zero) is set to 1 if the output of the ALU contains all
0's. It is clear to 0 otherwise. In other words, Z = 1 if the
output is zero and Z =0 if the output is not zero.

Bit V (overflow) is set to 1 if the exclusive-OR of the last two
carries equal to 1, and cleared to 0 otherwise.

The above status bits are used in conditional jump and branch
instructions.

Module 3

Data Representation

Section 3.1 – Data Types

 Registers contain either data or control information

 Control information is a bit or group of bits used to specify the sequence of

command signals needed for data manipulation

 Data are numbers and other binary-coded information that are operated on

 Possible data types in registers:

o Numbers used in computations

o Letters of the alphabet used in data processing

o Other discrete symbols used for specific purposes

 All types of data, except binary numbers, are represented in binary-coded form

 A number system of base, or radix, r is a system that uses distinct symbols for r

digits

 Numbers are represented by a string of digit symbols

 The string of digits 724.5 represents the quantity

7 x 102 + 2 x 101 + 4 x 100 + 5 x 10-1

 The string of digits 101101 in the binary number system represents the quantity

1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 45

 (101101)2 = (45)10

 We will also use the octal (radix 8) and hexidecimal (radix 16) number systems

(736.4)8 = 7 x 82 + 3 x 81 + 6 x 80 + 4 x 8-1 = (478.5)10

(F3)16 = F x 161 + 3 x 160 = (243)10

 Conversion from decimal to radix r system is carried out by separating the

number into its integer and fraction parts and converting each part separately

 Divide the integer successively by r and accumulate the remainders

 Multiply the fraction successively by r until the fraction becomes zero

 Each octal digit corresponds to three binary digits

 Each hexadecimal digit corresponds to four binary digits

 Rather than specifying numbers in binary form, refer to them in octal or

hexadecimal and reduce the number of digits by 1/3 or ¼, respectively

 A binary code is a group of n bits that assume up to 2n distinct combinations

 A four bit code is necessary to represent the ten decimal digits – 6 are unused

 The most popular decimal code is called binary-coded decimal (BCD)

 BCD is different from converting a decimal number to binary

 For example 99, when converted to binary, is 1100011

 99 when represented in BCD is 1001 1001

 The standard alphanumeric binary code is ASCII

 This uses seven bits to code 128 characters

 Binary codes are required since registers can hold binary information only

Section 3.2 – Complements

 Complements are used in digital computers for simplifying subtraction and logical

manipulation

 Two types of complements for each base r system: r’s complement and (r – 1)’s
complement

 Given a number N in base r having n digits, the (r – 1)’s complement of N is

defined as (rn – 1) – N

 For decimal, the 9’s complement of N is (10n – 1) – N

 The 9’s complement of 546700 is 999999 – 546700 = 453299

 The 9’s complement of 453299 is 999999 – 453299 = 546700

 For binary, the 1’s complement of N is (2n – 1) – N

 The 1’s complement of 1011001 is 1111111 – 1011001 = 0100110

 The 1’s complement is the true complement of the number – just toggle all bits

 The r’s complement of an n-digit number N in base r is defined as rn – N

 This is the same as adding 1 to the (r – 1)’s complement

 The 10’s complement of 2389 is 7610 + 1 = 7611

 The 2’s complement of 101100 is 010011 + 1 = 010100

 Subtraction of unsigned n-digit numbers: M – N

o Add M to the r’s complement of N – this results in
M + (rn – N) = M – N + rn

o If M N, the sum will produce an end carry rn which is discarded

o If M < N, the sum does not produce an end carry and is equal to
rn – (N – M), which is the r’s complement of (N – M). To obtain the

answer in a familiar form, take the r’s complement of the sum and place a

negative sign in front.

Example: 72532 – 13250 = 59282. The 10’s complement of 13250 is 86750.

M = 72352

10’s comp. of N = +86750
Sum = 159282

Discard end carry = -100000

Answer = 59282

Example for M < N: 13250 – 72532 = -59282

M = 13250

10’s comp. of N = +27468

Sum = 40718

No end carry

Answer = -59282 (10’s comp. of 40718)

Example for X = 1010100 and Y = 1000011

X = 1010100

2’s comp. of Y = +0111101

Sum = 10010001

Discard end carry = -10000000

Answer X – Y = 0010001

Y = 1000011

2’s comp. of X = +0101100
Sum = 1101111

No end carry

Answer = -0010001 (2’s comp. of 1101111)

Section 3.3 – Fixed-Point Representation

 Positive integers and zero can be represented by unsigned numbers

 Negative numbers must be represented by signed numbers since + and – signs are

not available, only 1’s and 0’s are

 Signed numbers have msb as 0 for positive and 1 for negative – msb is the sign bit

 Two ways to designate binary point position in a register

o Fixed point position

o Floating-point representation

 Fixed point position usually uses one of the two following positions

o A binary point in the extreme left of the register to make it a fraction

o A binary point in the extreme right of the register to make it an integer

o In both cases, a binary point is not actually present

 The floating-point representations uses a second register to designate the position

of the binary point in the first register

 When an integer is positive, the msb, or sign bit, is 0 and the remaining bits

represent the magnitude

 When an integer is negative, the msb, or sign bit, is 1, but the rest of the number
can be represented in one of three ways

o Signed-magnitude representation

o Signed-1’s complement representation

o Signed-2’s complement representation

 Consider an 8-bit register and the number +14

o The only way to represent it is 00001110

 Consider an 8-bit register and the number –14

o Signed magnitude: 1 0001110

o Signed 1’s complement: 1 1110001

o Signed 2’s complement: 1 1110010

 Typically use signed 2’s complement

 Addition of two signed-magnitude numbers follow the normal rules

o If same signs, add the two magnitudes and use the common sign
o Differing signs, subtract the smaller from the larger and use the sign of the

larger magnitude

o Must compare the signs and magnitudes and then either add or subtract

 Addition of two signed 2’s complement numbers does not require a comparison or

subtraction – only addition and complementation

o Add the two numbers, including their sign bits

o Discard any carry out of the sign bit position

o All negative numbers must be in the 2’s complement form

o If the sum obtained is negative, then it is in 2’s complement form

+6 00000110 -6 11111010

+13 00001101 +13 00001101

+19 00010011 +7 00000111

+6 00000110 -6 11111010

-13 11110011 -13 11110011

-7 11111001 -19 11101101

 Subtraction of two signed 2’s complement numbers is as follows

o Take the 2’s complement form of the subtrahend (including sign bit)

o Add it to the minuend (including the sign bit)

o A carry out of the sign bit position is discarded

 An overflow occurs when two numbers of n digits each are added and the sum

occupies n + 1 digits

 Overflows are problems since the width of a register is finite

 Therefore, a flag is set if this occurs and can be checked by the user

 Detection of an overflow depends on if the numbers are signed or unsigned

 For unsigned numbers, an overflow is detected from the end carry out of the msb

 For addition of signed numbers, an overflow cannot occur if one is positive and

one is negative – both have to have the same sign

 An overflow can be detected if the carry into the sign bit position and the carry

out of the sign bit position are not equal

+70 0 1000110 -70 1 0111010

+80 0 1010000 -80 1 0110000

+150 1 0010110 -150 0 1101010

 The representation of decimal numbers in registers is a function of the binary

code used to represent a decimal digit

 A 4-bit decimal code requires four flip-flops for each decimal digit

 This takes much more space than the equivalent binary representation and the

circuits required to perform decimal arithmetic are more complex

 Representation of signed decimal numbers in BCD is similar to the representation

of signed numbers in binary

 Either signed magnitude or signed complement systems

 The sign of a number is represented with four bits

o 0000 for +

o 1001 for –

 To obtain the 10’s complement of a BCD number, first take the 9’s complement

and then add one to the least significant digit

 Example: (+375) + (-240) = +135

0 375 (0000 0011 0111 1010)BCD

+9 760 (1001 0111 0110 0000)BCD

0 135 (0000 0001 0011 0101)BCD

Section 3.4 – Floating-Point Representation

 The floating-point representation of a number has two parts

 The first part represents a signed, fixed-point number – the mantissa

 The second part designates the position of the binary point – the exponent

 The mantissa may be a fraction or an integer

 Example: the decimal number +6132.789 is

o Fraction: +0.6123789

o Exponent: +04

o Equivalent to +0.6132789 x 10+4

 A floating-point number is always interpreted to represent m x re

 Example: the binary number +1001.11 (with 8-bit fraction and 6-bit exponent)

o Fraction: 01001110

o Exponent: 000100

o Equivalent to +(.1001110)2 x 2+4

 A floating-point number is said to be normalized if the most significant digit of

the mantissa is nonzero

 The decimal number 350 is normalized, 00350 is not

 The 8-bit number 00011010 is not normalized

 Normalize it by fraction = 11010000 and exponent = -3

 Normalized numbers provide the maximum possible precision for the floating-

point number

Section 3.5 – Other Binary Codes

 Digital systems can process data in discrete form only

 Continuous, or analog, information is converted into digital form by means of an

analog-to-digital converter

 The reflected binary or Gray code, is sometimes used for the converted digital

data

 The Gray code changes by only one bit as it sequences from one number to the

next

 Gray code counters are sometimes used to provide the timing sequences that

control the operations in a digital system

 Binary codes for decimal digits require a minimum of four bits

 Other codes besides BCD exist to represent decimal digits

 The 2421 code and the excess-3 code are both self-complementing

 The 9’s complement of each digit is obtained by complementing each bit in the

code

 The 2421 code is a weighted code

 The bits are multiplied by indicated weights and the sum gives the decimal digit

 The excess-3 code is obtained from the corresponding BCD code added to 3

Section 3.6 – Error Detection Codes

 Transmitted binary information is subject to noise that could change bits 1 to 0

and vice versa

 An error detection code is a binary code that detects digital errors during

transmission

 The detected errors cannot be corrected, but can prompt the data to be

retransmitted

 The most common error detection code used is the parity bit

 A parity bit is an extra bit included with a binary message to make the total
number of 1’s either odd or even

 The P(odd) bit is chosen to make the sum of 1’s in all four bits odd

 The even-parity scheme has the disadvantage of having a bit combination of all

0’s

 Procedure during transmission:

o At the sending end, the message is applied to a parity generator

o The message, including the parity bit, is transmitted

o At the receiving end, all the incoming bits are applied to a parity checker

o Any odd number of errors are detected

 Parity generators and checkers are constructed with XOR gates (odd function)

 An odd function generates 1 iff an odd number if input variables are 1

Computer Arthemetic:

Introduction:

Data is manipulated by using the arithmetic instructions in digital

computers. Data is manipulatedto produce results necessary to give

solution for the computation problems. The Addition, subtraction,

multiplication and division are the four basic arithmetic operations.

If we want then we can derive other operations by using these four

operations.

To execute arithmetic operations there is a separate section called

arithmetic processing unit in central processing unit. The arithmetic

instructions are performed generally on binary or decimal data.

Fixed-point numbers are used to represent integers or fractions. We

can have signed or unsigned negative numbers. Fixed-point

addition is the simplest arithmetic operation.

If we want to solve a problem then we use a sequence of well-defined

steps. These steps are collectively called algorithm. To solve

various problems we give algorithms.

In order to solve the computational problems, arithmetic instructions

are used in digital computers that manipulate data. These

instructions perform arithmetic calculations.

And these instructions perform a great activity in processing

data in a digital computer. As we already stated that with

the four basic arithmetic operations addition, subtraction,

multiplication and division, it is possible to derive other

arithmetic operations and solve scientific problems by

means of numerical analysis methods.

A processor has an arithmetic processor(as a sub part of it) that

executes arithmetic operations. The data type, assumed to

reside in processor, registers during the execution of an

arithmetic instruction. Negative numbers may be in a signed

magnitude or signed complement representation. There are

three ways of representing negative fixed point - binary

numbers signed magnitude, signed 1’s complement or

signed 2’s complement. Most computers use the signed

magnitude representation for the mantissa.

Addition and Subtraction :

Addition and Subtraction with Signed –Magnitude Data

We designate the magnitude of the two numbers by A and B.

Where the signed numbers are added or subtracted, we find

that there are eight different conditions to consider,

depending on the sign of the numbers and the operation

performed. These conditions are listed in the first column of

Table 4.1. The other columns in the table show the actual

operation to be performed with the magnitude of the

numbers. The last column is needed to present a negative

zero. In other words, when two equal numbers are

subtracted, the result should be +0 not -0.

The algorithms for addition and subtraction are derived from

the table and can be stated as follows (the words

parentheses should be used for the subtraction algorithm)

Addition and Subtraction of Signed-Magnitude Numbers

Computer Arithmetic 2 Addition and Subtraction

SIGNED MAGNITUDEADDITION
AND

SUBTRACTION

Addition: A + B ; A: Augend; B: Addend

Subtraction: A - B: A: Minuend; B: Subtrahend

Hardware Implementation Bs B Register

AVF ComplementerE

Output
Parallel Adder

Carry

S

M(Mode Control)

Input
Carry

As A Register
Load Sum

Computer Organization Prof. H. Yoon

Computer Arithmetic 3 Addition and Subtraction

Computer Organization Prof. H. Yoon

Hardware

Overflow

Algorithm

Subtract Add

Minuend in AC
Subtrahend in B

Augend in AC
Addend in B

END END

SIGNED 2’S COMPLEMENT ADDITION AND SUBTRACTION

AC AC + B
V overflow

AC AC + B’+ 1

V overflow

AC

V
Complementer and

Parallel Adder

B Register

Operation

Add

Magnitude

Subtract Magnitude

When A>B When A<B When A=B

(+A) + (+B)
(+A) + (- B)

+(A + B)
+(A - B)

- (B - A)

+(A - B)

(- A) + (+B) - (A - B) +(B - A) +(A - B)

(- A) + (- B) - (A + B)

(+A) - (+B) +(A - B) - (B - A) +(A - B)

(+A) - (- B) +(A + B)

Algorithm:

The flowchart is shown in Figure 7.1. The two signs A, and B, are
compared by anexclusive-OR gate.

If the output of the gate is 0 the signs are

identical; If it is 1, the signs are
different.

For an add operation, identical signs dictate that the magnitudes be
added. For asubtract operation, different signs dictate that the
magnitudes be added.

The magnitudes are added with a microoperation EA A + B, where EA is a
register that combines E and A. The carry in E after the addition constitutes an
overflow if it isequal to 1. The value of E is transferred into the add-overflow
flip-flop AVF.

The two magnitudes are subtracted if the signs are different for an add
operation or identical for a subtract operation. The magnitudes are subtracted
by adding A to the2's complemented B. No overflow can occur if the numbers
are subtracted so AVF is cleared to 0.

1 in E indicates that A >= B and the number in A is the correct result. If this
numbs iszero, the sign A must be made positive to avoid a negative zero.

0 in E indicates that A < B. For this case it is necessary to take the 2's
complement ofthe value in A. The operation can be done with one
microoperation A A' +1.

However, we assume that the A register has circuits for microoperations
complementand increment, so the 2's complement is obtained from these two
microoperations.

In other paths of the flowchart, the sign of the result is the same as the sign of
A. so nochange in A is required. However, when A < B, the sign of the result
is the complement of the original sign of A. It is then necessary to complement
A, to obtain the correct sign.

The final result is found in register A and its sign in As. The value in AVF
provides anoverflow indication. The final value of E is immaterial.

Figure 7.2 shows a block diagram of the hardware for implementing the
addition andsubtraction operations.

It consists of registers A and B and sign flip-flops As and

Bs.Subtraction is done by adding A to the 2's

complement of B.

The output carry is transferred to flip-flop E , where it can be checked to
determinethe relative magnitudes of two numbers.

The add-overflow flip-flop AVF holds the overflow bit when A and B are added.

The A register provides other microoperations that may be needed when we
specifythe sequence of steps in the algorithm.

Multiplication Algorithm:

In the beginning, the multiplicand is in B and the multiplier in Q. Their corresponding

signs are in Bs and Qs respectively. We compare the signs of both A and Q and set to

corresponding sign of the product since a double-length product will be stored in

registers A and Q. Registers A andE are cleared and the sequence counter SC is set to the

number of bits of the multiplier. Since an operand must be stored with its sign, one bit of

the word will be occupied by the sign and the magnitude will consist of n-1 bits.

Now, the low order bit of the multiplier in Qn is tested. If it is 1, the multiplicand (B) is

added to present partial product (A), 0 otherwise. Register EAQ is then shifted once to

the right to form thenew partial product. The sequence counter is decremented by 1 and

its new value checked. If it is not equal to zero, the process is repeated and a new partial

product is formed. When SC = 0 we stops the process.

Booth’s algorithm :

Booth algorithm gives a procedure for multiplying binary integers in
signed- 2’scomplement representation.

It operates on the fact that strings of 0’s in the multiplier require no addition but just

shifting, and a string of 1’s in the multiplier from bit weight 2k to weight 2m
can betreated as 2k+1 – 2m.

For example, the binary number 001110 (+14) has a string 1’s from 23 to 21
(k=3, m=1). The number can be represented as 2k+1 – 2m. = 24 – 21 = 16 – 2 =
14. Therefore, the multiplication M X 14, where M is the multiplicand and 14
the multiplier, can be done as M X 24 – M X 21.

Thus the product can be obtained by shifting the binary multiplicand M four
times tothe left and subtracting M shifted left once.

As in all multiplication schemes, booth algorithm requires examination
of themultiplier bits and shifting of partial product.

Prior to the shifting, the multiplicand may be added to the partial product,
subtractedfrom the partial, or left unchanged according to the following
rules:

1. The multiplicand is subtracted from the partial product upon encountering the
first least significant 1 in a string of 1’s in the multiplier.

2. The multiplicand is added to the partial product upon encountering the first 0

in a string of 0’s in the multiplier.

3. The partial product does not change when multiplier bit is identical to the

previous multiplier bit.

The algorithm works for positive or negative multipliers in 2’s
complementrepresentation.

This is because a negative multiplier ends with a string of 1’s and the last
operationwill be a subtraction of the appropriate weight.

The two bits of the multiplier in Qn and Qn+1 are inspected.

If the two bits are equal to 10, it means that the first 1 in a string of 1 's has
been encountered. This requires a subtraction of the multiplicand from the
partial product inAC.

If the two bits are equal to 01, it means that the first 0 in a string of 0's has
been encountered. This requires the addition of the multiplicand to the partial
product inAC.

When the two bits are equal, the partial product does not change.

Division Algorithms

Division of two fixed-point binary numbers in signed magnitude representation is performed

withpaper and pencil by a process of successive compare, shift and subtract operations.

Binarydivision is much simpler than decimal division because here the quotient digits are

either 0 or 1 and there is no need to estimate how many times the dividend or partial

remainder fits into the divisor. The division process is described in Figure

The devisor is compared with the five most significant bits of the dividend. Since

the 5-bit number is smaller than B, we again repeat the same process. Now the

6-bit number is greater than B, so we place a 1 for the quotient bit in the sixth

position above the dividend. Now we shift the divisor once to the right and

subtract it from the dividend. The difference is known as a partial remainder

because the division could have stopped here to obtain a quotient of 1 and

a remainder equal to the partial remainder. Comparing a partial remainder with the divisor

continues the process. If the partial remainder is greater than or equal to the divisor, the quotient

bit is equal to

1. The divisor is then shifted right and subtracted from the partial remainder. If the

partial remainder is smaller than the divisor, the quotient bit is 0 and no

subtraction is needed. The divisor is shifted once to the right in any case.

Obviously the result gives both a quotient and a remainder.

Hardware Implementation for Signed-Magnitude Data

In hardware implementation for signed-magnitude data in a digital computer, it is

convenient to change the process slightly. Instead of shifting the divisor to the

right, two dividends, or partial remainders, are shifted to the left, thus leaving

the two numbers in the required relative position. Subtraction is achieved by

adding A to the 2's complement of B. End carry gives the information about the

relative magnitudes.

The hardware required is identical to that of multiplication. Register EAQ is now

shifted to the left with 0 inserted into Qn and the previous value of E is lost.

The example is given in Figure 4.10 to clear the proposed division process.

The divisor is stored in the B register and the double-length dividend is stored

in registers A and Q. The dividend is shifted to the left and the divisor is

subtracted by adding its 2's complement value. E

Hardware Implementation for Signed-Magnitude Data

Algorithm:

Example of Binary Division with Digital Hardware

Floating-point Arithmetic operations :

In many high-level programming languages we have a facility for specifying floating-point

numbers. The most common way is by a real declaration statement. High level

programming languages must have a provision for handling floating-point arithmetic

operations. The operations are generally built in the internal hardware. If no hardware is

available, the compiler must be designed with a package of floating-point software

subroutine. Although the hardware method is more expensive, it is much more efficient

than the software method. Therefore, floating- point hardware is included in most

computers and is omitted only in very small ones.

Basic Considerations :

There are two part of a floating-point number in a computer - a mantissa m and an exponent

e. The two parts represent a number generated from multiplying m times a radix r raised

to the valueof e. Thus

m x re

The mantissa may be a fraction or an integer. The position of the radix point and the value of

the radix r are not included in the registers. For example, assume a fraction representation

and a radix

10. The decimal number 537.25 is represented in a register with m = 53725 and e = 3 and is

interpreted to represent the floating-point number

.53725 x 103

A floating-point number is said to be normalized if the most significant digit of the mantissa

in nonzero. So the mantissa contains the maximum possible number of significant digits.

We cannot normalize a zero because it does not have a nonzero digit. It is represented in

floating-point by all 0’s in the mantissa and exponent.

Floating-point representation increases the range of numbers for a given register. Consider a

computer with 48-bit words. Since one bit must be reserved for the sign, the range of

fixed-point integer numbers will be + (247 – 1), which is approximately + 1014. The 48

bits can be used to represent a floating-point number with 36 bits for the mantissa and 12

bits for the exponent. Assuming fraction representation for the mantissa and taking the

two sign bits into consideration, the range of numbers that can be represented is

+ (1 – 2-35) x 22047

This number is derived from a fraction that contains 35 1’s, an exponent of 11 bits (excluding

its sign), and because 211–1 = 2047. The largest number that can be accommodated is

approximately 10615. The mantissa that can accommodated is 35 bits (excluding the sign)

and if considered as an integer it can store a number as large as (235 –1). This is

approximately equal to 1010, which is equivalent to a decimal number of 10 digits.

Computers with shorter word lengths use two or more words to represent a floating-point

number. An 8-bit microcomputer uses four words to represent one floating-point number.

One word of 8 bits are reserved for the exponent and the 24 bits of the other three words

are used in the mantissa.

Arithmetic operations with floating-point numbers are more complicated than with fixed-

point numbers. Their execution also takes longer time and requires more complex

hardware. Adding or subtracting two numbers requires first an alignment of the radix

point since the exponent parts must be made equal before adding or subtracting the

mantissas. We do this alignment by shifting one mantissa while its exponent is adjusted

until it becomes equal to the other exponent. Consider the sum of the following floating-

point numbers:

.5372400 x 102

+ .1580000 x 10-1

Floating-point multiplication and division need not do an alignment of the mantissas.

Multiplying the two mantissas and adding the exponents can form the product. Dividing

the mantissas and subtracting the exponents perform division.

The operations done with the mantissas are the same as in fixed-point numbers, so the two

can share the same registers and circuits. The operations performed with the exponents

are compared and incremented (for aligning the mantissas), added and subtracted (for

multiplication) anddivision), and decremented (to normalize the result). We can represent

the exponent in any one of the three representations - signed-magnitude, signed 2’s

complement or signed 1’s complement.

Biased exponents have the advantage that they contain only positive numbers. Now it

becomes simpler to compare their relative magnitude without bothering about their signs.

Another advantage is that the smallest possible biased exponent contains all zeros. The

floating-point representation of zero is then a zero mantissa and the smallest possible

exponent.

Register Configuration

The register configuration for floating-point operations is shown in figure 4.13. As a rule, the

same registers and adder used for fixed-point arithmetic are used for processing the

mantissas.The difference lies in the way the exponents are handled.

The register organization for floating-point operations is shown in Fig. 4.13. Three registers

are there, BR, AC, and QR. Each register is subdivided into two parts. The mantissa

part has thesame uppercase letter symbols as in fixed-point representation. The exponent

part may usecorresponding lower-case letter symbol.

Registers for Floating Point Arithmetic

BR

E

AC

QR

FLOATING POINT ARITHMETIC OPERATIONS

Q Qs

B Bs

q

a

Parallel Adder
and Comparator Parallel Adder

b

F = m x re

where m: Mantissa
r: Radix
e: Exponent

Computer Arithmetic 14 Floating Point Arithmetic

As A1 A

Computer Organization Prof. H. Yoon

Figure 4.13: Registers for Floating Point arithmetic operations

Assuming that each floating-point number has a mantissa in signed-magnitude representation

and a biased exponent. Thus the AC has a mantissa whose sign is in As, and a magnitude

that is in A. The diagram shows the most significant bit of A, labeled by A1. The bit in

his position must be a 1 to normalize the number. Note that the symbol AC represents the

entire register, that is, the concatenation of As, A and a.

In the similar way, register BR is subdivided into Bs, B, and b and QR into Qs, Q and q. A

parallel-adder adds the two mantissas and loads the sum into A and the carry into E. A

separate parallel adder can be used for the exponents. The exponents do not have a

district sign bit becausethey are biased but are represented as a biased positive quantity. It

is assumed that the floating- point number are so large that the chance of an exponent

overflow is very remote and so the exponent overflow will be neglected. The exponents

are also connected to a magnitude comparator that provides three binary outputs to

indicate their relative magnitude.

The number in the mantissa will be taken as a fraction, so they binary point is assumed to

reside to the left of the magnitude part. Integer representation for floating point causes

certain scaling problems during multiplication and division. To avoid these problems, we

adopt a fractionrepresentation.

The numbers in the registers should initially be normalized. After each arithmetic operation,

the result will be normalized. Thus all floating-point operands are always normalized.

Addition and Subtraction of Floating Point Numbers

During addition or subtraction, the two floating-point operands are kept in AC and BR. The

sum or difference is formed in the AC. The algorithm can be divided into four

consecutive parts:

1. Check for zeros.

2. Align the mantissas.

3. Add or subtract the mantissas

4. Normalize the result

A floating-point number cannot be normalized, if it is 0. If this number is used for

computation, the result may also be zero. Instead of checking for zeros during the

normalization process we check for zeros at the beginning and terminate the process if

necessary. The alignment of the mantissas must be carried out prior to their operation.

After the mantissas are added or subtracted, the result may be un-normalized. The

normalization procedure ensures that the result is normalized before it is transferred to

memory.

If the magnitudes were subtracted, there may be zero or may have an underflow in the result. If the

mantissa is equal to zero the entire floating-point number in the AC is cleared to zero.

Otherwise, the mantissa must have at least one bit that is equal to 1. The mantissa has an

underflow if the most significant bit in position A1, is 0. In that case, the mantissa is shifted left

and the exponent decremented.The bit in A1 is checked again and the process is repeated until

A1 = 1. When A1 = 1, the mantissa is normalized and the operation is completed.

Algorithm for Floating Point Addition and Subtraction

 =0
BR

 0

=0 AC

 0

1

A>=B

E 0

A<B

A A+B

a a+1
shr A

a a+b’+1
a a+bias

q a

FLOATING POINT DIVISION

A A+B

QR 0

BR Divisor
AC Dividend

Divide Magnitude of mantissa

as in fixed point numbers

divide
by 0

Multiplication:

Computer Arithmetic 17 Floating Point Arithmetic

Qs As + Bs
Q 0

SC n-1

EA A+B’+1

Computer Organization Prof. H. Yoon

UNIT-IV 1 KNREDDY

UNIT-IV

MEMORY AND INPUT/OUTPUT ORGANIZATION

Memory Organization:

Memory Hierarchy

Main Memory

Auxiliary Memory

Associative Memory

Cache Memory

Virtual Memory.

Input/output Organization:

Input-Output Interface

Asynchronous Data Transfer

Modes of Transfer

Priority Interrupt

Direct Memory Access (DMA).

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 2 KNREDDY

MEMORY HIERARCHY

 The memory unit is an essential component in any digital computer since it is needed for

storing programs and data. A very small computer with a limited application may be able to

fulfill its intended task without the need of additional storage capacity.

 Most general-purpose computers would run more efficiently if they were equipped with

additional storage beyond the capacity of the main memory.

 It is more economical to use low-cost storage devices to serve as a backup for storing the

information that is not currently used by the CPU.

 The memory unit that communicates directly with the CPU is called the main memory.

Devices that provide backup storage are called auxiliary memory. The most common auxiliary

memory devices used in computer systems are magnetic disks and tapes. They are used for

storing system programs, large data files, and other backup information. Only programs and

data currently needed by the processor reside in main memory. All other information is stored

in auxiliary memory and transferred to main memory when needed.

 The memory hierarchy system consists of all storage devices employed in a computer system

from the slow but high-capacity auxiliary memory to a relatively faster main memory, to an

even smaller and faster cache memory accessible to the high-speed processing logic.

Memory hierarchy in computer system

 The main memory occupies a central position by being able to communicate directly with the

CPU and with auxiliary memory devices through an I/O processor.

 When programs not residing in main memory are needed by the CPU, they are brought in from

auxiliary memory. Programs not currently needed in main memory are transferred into auxiliary

memory to provide space for currently used programs and data.

 A special very-high speed memory called a cache is sometimes used to increase the speed of

processing by making current programs and data available to the CPU at a rapid rate. The cache

memory is employed in computer systems to compensate for the speed differential between

main memory access time and processor logic.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 3 KNREDDY

 CPU logic is usually faster than main memory access time, with the result that processing speed

is limited primarily by the speed of main memory.

 A technique used to compensate for the mismatch in operating speeds is to employ in extremely

fast, small cache between the CPU and main memory whose access time is close to processor

logic clock cycle time.

 The reason for having two or three levels of memory hierarchy is economics.

 As the storage capacity of the memory increases, the cost per bit for storing binary information

decreases and the access time of the memory becomes longer.

 The overall goal of using a memory hierarchy is to obtain the highest-possible average access

speed while minimizing the total cost of the entire memory system.

 Auxiliary and cache memories are used for different purposes. The cache holds those parts of

the program and data that are most heavily used, while the auxiliary memory holds those parts

that are not presently used by the CPU. Moreover, the CPU has direct access to both cache and

main memory but not to auxiliary memory. The transfer from auxiliary to main memory is

usually done by means of direct memory access of large blocks of data. The typical access time

ratio between cache and main memory is about 1 to 7. For example, a typical cache memory

may have an access time of 100ns, while main memory access time may be 700ns. Auxiliary

memory average access time is usually 1000 times that of main memory. Block size in auxiliary

memory typically ranges from256 to 2048 words, while cache block size is typically from 1 to

16 words.

 Many operating systems are designed to enable the CPU to process a number of independent

programs concurrently. This concept, called multiprogramming, refers to the existence of two

or more programs in different parts of the memory hierarchy at the same time.

 In a multiprogramming system, when one program is waiting for input or output transfer, there

is another program ready to utilize the CPU.

 Computer programs are sometimes too long to be accommodated in the total space available in

main memory.

 When the program or a segment of the program is to be executed, it is transferred to main

memory to be executed by the CPU.

 It is the task of the operating system to maintain in main memory a portion of this information

that is currently active.

 The part of the computer system that supervises the flow of information between auxiliary

memory and main memory is called the memory management system.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 4 KNREDDY

MAIN MEMORY

 The main memory is the central storage unit in a computer system. It is a relatively large and

fast memory used to store programs and data during the computer operation.

 The principal technology used for the main memory is based on semiconductor integrated

circuits.

 Integrated circuit RAM chips are available in two possible operating modes, static and

dynamic. The static RAM consists essentially of internal flip-flops that store the binary

information. The stored information remains valid as long as power is applied to unit. The

dynamic RAM stores the binary information in the form of electric charges that are applied to

capacitors. The capacitors are provided inside the chip by MOS transistors. The stored charge

on the capacitors tends to discharge with time and the capacitors must be periodically recharged

by refreshing the dynamic memory.

 The dynamic RAM offers reduced power consumption and larger storage capacity in a single

memory chip.

 The static RAM is easier to use and has shorted read and write cycles.

 Most of the main memory in a general-purpose computer is made up of RAM integrated circuit

chips, but a portion of the memory may be constructed with ROM chips.

 RAM refers to a random-access memory, but it is used to designate a read/write memory to

distinguish it from a read-only memory, although ROM is also random access.

 RAM is used for storing the bulk of the programs and data that are subject to change. ROM is

used for storing programs that are permanently resident in the computer

 The ROM portion of main memory is needed for storing an initial program called a bootstrap

loader. The bootstrap loader is a program whose function is to start the computer software

operating when power is turned on.

 Since RAM is volatile, its contents are destroyed when power is turned off. The contents of

ROM remain unchanged after power is turned off and on again.

 The startup of a computer consists of turning the power on and starting the execution of an

initial program. Thus when power is turned on, the hardware of the computer sets the program

counter to the first address of the bootstrap loader. The bootstrap program loads a portion of the

operating system from disk to main memory and control is then transferred to the operating

system, which prepares the computer for general use.

 RAM and ROM chips are available in a variety of sizes. If the memory needed for the computer

is larger than the capacity of one chip, it is necessary to combine a number of chips to form the

required memory size. Ex: 1024 × 8 memory can be constructed with 128 × 8 RAM chips and

512 × 8 ROM chips.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 5 KNREDDY

RAM AND ROM CHIPS

 A RAM chip is better suited for communication with the CPU if it has one or more control

inputs that select the chip only when needed. Another common feature is a bidirectional data

bus that allows the transfer of data either from memory to CPU during a read operation or from

CPU to memory during a write operation.

 A bidirectional bus can be constructed with three-state buffers.

 The block diagram of a RAM chip is shown in Fig.

 The capacity of the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit

address and an 8-bit bidirectional data bus. The read and write inputs specify the memory

operation and the two chips select (CS) control inputs are for enabling the chip only when it is

selected by the microprocessor. The availability of more than one control input to select the

chip facilitates the decoding of the address lines when multiple chips are used in the

microcomputer.

 The read and write inputs are sometimes combined into one line labeled R/W. When the chip is

selected, the two binary states in this line specify the two operations or read or write.

 The unit is in operation only when CS1 = 1 and CS2 = 0.

 If the chip select inputs are not enabled, or if they are enabled but the read but the read or write

inputs are not enabled, the memory is inhibited and its data bus is in a high-impedance state.

 When CS1 = 1 and CS2 = 0, the memory can be placed in a write or read mode. When the WR

input is enabled, the memory stores a byte from the data bus into a location specified by the

address input lines.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 6 KNREDDY

 When the RD input is enabled, the content of the selected byte is placed into the data bus. The

RD and WR signals control the memory operation as well as the bus buffers associated with the

bidirectional data bus.

 A ROM chip is organized externally in a similar manner. ROM can only read, the data bus can

only be in an output mode. The block diagram of a ROM chip is shown in Fig.

 The nine address lines in the ROM chip specify any one of the 512 bytes stored in it. The two

chip select inputs must be CS1 = 1 and CS2 = 0 for the unit to operate. Otherwise, the data bus

is in a high-impedance state. There is no need for a read or write control because the unit can

only read. Thus when the chip is enabled by the two select inputs, the byte selected by the

address lines appears on the data bus.

MEMORY ADDRESS MAP

 The designer of a computer system must calculate the amount of memory required for the

particular application and assign it to either RAM or ROM. The interconnection between

memory and processor is then established form knowledge of the size of memory needed and

the type of RAM and ROM chips available.

 A memory address map, is a pictorial representation of assigned address space for each chip in

the system.

 To demonstrate with a particular example, assume that a computer system needs 512 bytes of

RAM and 512 bytes of ROM.

 The memory address map for this configuration is shown in Table.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 7 KNREDDY

 The small x’s under the address bus lines designate those lines that must be connected to the

address inputs in each chip.

 The RAM chips have 128 bytes and need seven address lines. The ROM chip has 512 bytes and

needs 9 address lines.

 It is now necessary to distinguish between four RAM chips by assigning to each a different

address. For this particular example we choose bus lines 8 and 9 to represent four distinct

binary combinations.

 The distinction between a RAM and ROM address is done with another bus line. Here we

choose line 10 for this purpose. When line 10 is 0, the CPU selects a RAM, and when this line

is equal to 1, it selects the ROM.

 The first hexadecimal digit represents lines 13 to 16 and is always 0. The next hexadecimal

digit represents lines 9 to 12, but lines 11 and 12 are always 0. The range of hexadecimal

addresses for each component is determined from the x’s associated with it. These x’s represent

a binary number that can range from an all-0’s to an all-1’s value.

MEMORY CONNECTION TO CPU

 RAM and ROM chips are connected to a CPU through the data and address buses.

 The low-order lines in the address bus select the byte within the chips and other lines in the

address bus select a particular chip through its chip select inputs.

 The connection of memory chips to the CPU is shown in Fig. This configuration gives a

memory capacity of 512 bytes of RAM and 512 bytes of ROM.

 Each RAM receives the seven low-order bits of the address bus to select one of 128 possible

bytes. The particular RAM chip selected is determined from lines 8 and 9 in the address bus.

This is done through a 2 × 4 decoder whose outputs go to the CS1 input in each RAM chip.

Thus, when address lines 8 and 9 are equal to 00, the first RAM chip is selected. When 01, the

second RAM chip is selected, and so on.

 The RD and WR outputs from the microprocessor are applied to the inputs of each RAM chip.

 The selection between RAM and ROM is achieved through bus line 10. The RAMs are selected

when the bit in this line is 0, and the ROM when the bit is 1. The other chip select input in the

ROM is connected to the RD control line for the ROM chip to be enabled only during a read

operation.

 Address bus lines 1 to 9 are applied to the input address of ROM without going through the

decoder. This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM.

 The data bus of the ROM has only an output capability, whereas the data bus connected to the

RAMs can transfer information in both directions.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 8 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 9 KNREDDY

AUXILIARY MEMORY:

 The most common auxiliary memory devices used in computer systems are magnetic disks and

magnetic tapes. Other components used, but not as frequently, are magnetic drums, magnetic

bubble memory, and optical disks.

 The important characteristics of any device are its access mode, access time, transfer rate,

capacity, and cost.

 The average time required to reach a storage location in memory and obtain its contents is

called the access time. The access time consists of a seek time required to position the read-

write head to a location and a transfer time required to transfer data to or from the device.

 Auxiliary storage is organized in records or blocks. A record is a specified number of characters

or words. Reading or writing is always done on entire records. The transfer rate is the number

of characters or words that the device can transfer per second, after it has been positioned at the

beginning of the record.

 Magnetic drums and disks are quite similar in operation. Both consist of high-speed rotating

surfaces coated with a magnetic recording medium. The rotating surface of the drum is a

cylinder and that of the disk, a round flat plate. Bits are recorded as magnetic spots on the

surface as it passes a stationary mechanism called a write head. Stored bits are detected by a

change in magnetic field produced by a recorded spot on the surface as it passes through a read

head.

MAGNETIC DISKS

 A magnetic disk is a circular plate constructed of metal or plastic coated with magnetized

material. Often both sides of the disk are used and several disks may be stacked on one spindle

with read/write heads available on each surface.

 All disks rotate together at high speed and are not stopped or started from access purposes.

 Bits are stored in the magnetized surface in spots along concentric circles called tracks. The

tracks are commonly divided into sections called sectors. In most systems, the minimum

quantity of information which can be transferred is a sector.

 Some units use a single read/write head from each

disk surface. The track address bits are used by a

mechanical assembly to move the head into the

specified track position before reading or writing.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 10 KNREDDY

 In other disk systems, separate read/write heads are provided for each track in each surface. The

address can then select a particular track electronically through a decoder circuit. This type of

unit is more expensive and is found only in very large computer systems.

 A disk system is addressed by address bits that specify the disk number, the disk surface, the

sector number and the track within the sector.

 After the read/write heads are positioned in the specified track, the system has to wait until the

rotating disk reaches the specified sector under the read/write head.

 Information transfer is very fast once the beginning of a sector has been reached.

 Disks may have multiple heads and simultaneous transfer of bits from several tracks at the same

time.

 A track in a given sector near the circumference is longer than a track near the center of the

disk. If bits are recorded with equal density, some tracks will contain more recorded bits than

others. To make all the records in a sector of equal length, some disks use a variable recording

density with higher density on tracks near the center than on tracks near the circumference. This

equalizes the number of bits on all tracks of a given sector.

 Disks that are permanently attached to the unit assembly and cannot be removed by the

occasional user are called hard disks. A disk drive with removable disks is called a

floppy disk.

 The disks used with a floppy disk drive are small removable disks made of plastic coated with

magnetic recording material. There are two sizes commonly used, with diameters of 5.25 and

3.5 inches. The 3.5-inch disks are smaller and can store more data than can the 5.25-inch disks.

MAGNETIC TAPE

 The Magnetic tape itself is a strip of plastic coated with a magnetic recording medium. Bits are

recorded as magnetic spots on the tape along several tracks. Usually, seven or nine bits are

recorded simultaneously to form a character together with a parity bit.

 Read/write heads are mounted one in each track so that data can be recorded and read as a

sequence of characters.

 Magnetic tape units can be stopped, started to move forward or in reverse, or can be rewound.

 Gaps of unrecorded tape are inserted between records where the tape can be stopped. The tape

starts moving while in a gap and attains its constant speed by the time it reaches the next record.

 Each record on tape has an identification bit pattern at the beginning and end. By reading the bit

pattern at the beginning, the tape control identifies the record number. By reading the bit pattern

at the end of the record, the control recognizes the beginning of a gap. A tape unit is addressed

by specifying the record number of characters in the record. Records may be of fixed or

variable length.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 11 KNREDDY

ASSOCIATIVE MEMORY

 Many data-processing applications require the search of items in a table stored in memory. An

assembler program searches the symbol address table in order to extract the symbol’s binary

equivalent.

 The number of accesses to memory depends on the location of the item and the efficiency of the

search algorithm. Many search algorithms have been developed to minimize the number of

accesses while searching for an item in a random or sequential access memory.

 The time required to find an item stored in memory can be reduced considerably if stored data

can be identified for access by the content of the data itself rather than by an address.

 A memory unit accessed by content is called an associative memory or content addressable

memory (CAM).

 When a word is to be read from an associative memory, the content of the word, or part of the

word, is specified. The memory locates all words which match the specified content and marks

them for reading.

 An associative memory is more expensive than a random access memory because each cell

must have storage capability as well as logic circuits for matching its content with an external

argument. For this reason, associative memories are used in applications where the search time

is very critical and must be very short.

HARDWARE ORGANIZATION

 The block diagram of an associative memory is shown

in Fig.

 It consists of a memory array and logic for m words

with n bits per word. The argument register A and key

register K each have n bits, one for each bit of a word.

The match register M has m bits, one for each

memory word.

 Each word in memory is compared in parallel with the

content of the argument register. The words that

match the bits of the argument register set a

corresponding bit in the match register.

 After the matching process, those bits in the match register that have been set indicate the fact

that their corresponding words have been matched.

 Reading is accomplished by a sequential access to memory for those words whose

corresponding bits in the match register have been set.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 12 KNREDDY

 The key register provides a mask for choosing a particular field or key in the argument word.

The entire argument is compared with each memory word if the key register contains all 1’s.

Otherwise, only those bits in the argument that have 1’s in their corresponding position of the

key register are compared.

 To illustrate with a numerical example, suppose that the argument register A and the key

register K have the bit configuration shown below. Only the three leftmost bits of A are

compared with memory words because K has 1’s in these positions.

A 101 111100

K 111 000000

Word 1 100 111100 no match

Word 2 101 000001 match

 The relation between the memory array and external registers in an associative memory is

shown in Fig.

 The cells in the array are marked by the letter C

with two subscripts. The first subscript gives the

word number and the second specifies the bit

position in the word. Thus cell Cij is the cell for bit

j in word i.

 A bit Aj in the argument register is compared with

all the bits in column j of the array provided that Kj

= 1. This is done for all columns j = 1, 2,…,n.

 If a match occurs between all the unmasked bits of the argument and the bits in word i, the

corresponding bit Mi in the match register is set to 1. If one or more unmasked bits of the

argument and the word do not match, Mi is cleared to 0

 The internal organization of a typical cell Cij is shown in Fig.

 It consists of a flipflop storage element Fij and the

circuits for reading, writing, and matching the cell.

 The input bit is transferred into the storage cell

during a write operation. The bit stored is read out

during a read operation.

 The match logic compares the content of the storage

cell with the corresponding unmasked bit of the

argument and provides an output for the decision

logic that sets the bit in Mi.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 13 KNREDDY

MATCH LOGIC

 The match logic for each word can be derived from the comparison algorithm for two binary

numbers. First, we neglect the key bits and compare the argument in A with the bits stored in

the cells of the words. Word i is equal to the argument in A if Aj = Fij for j = 1, 2,…, n. Two

bits are equal if they are both 1 or both 0. The equality of two bits can be expressed logically by

the Boolean function

xj= Aj Fij + A'jF'ij

where xj = 1 if the pair of bits in position j are equal; otherwise, xj = 0.

 For a word i to be equal to the argument in A we must have all xj variables equal to 1.

 This is the condition for setting the corresponding match bit Mi to 1. The Boolean function for

this condition is

Mi= x1 x2 x3 … xn

 Include the key bit Kj in the comparison logic. The requirement is that if Kj = 0,the

corresponding bits of Aj and Fij need no comparison. Only when Kj = 1 must they be

compared. This requirement is achieved by ORing each term with K’j , thus:

xj + K’j = xj if Kj=1

1 if Kj=0

 When Kj = 1, we have Kj’ = 0 and xj + 0 = xj. When Kj = 0, then Kj’ = 1 xj + 1 = 1. A term

(xj +Kj’) will be in the 1 state if its pair of bitsis not compared. This is necessary because each

term is ANDed with all other terms so that an output of 1 will have no effect. The comparison

of the bits has an effect only when Kj = 1.

 The match logic for word i in an associative memory can now be expressed by the following

Boolean function:

Mi = (x1 + K '1) (x2 + K '2) (x3 + K '3) …. (xn + K 'n)

 Each term in the expression will be equal to 1 if its corresponding Kj = 0. If Kj = 1, the term

will be either 0 or 1 depending on the value of xj. A match will occur and Mi will be equal to 1

if all terms are equal to 1.

 If we substitute the original definition of xj. the Boolean function above can be expressed

as follows:

Mi = ∏ (Aj Fij + A′jF′ij + K′j)
j=1

 The circuit for matching one word is shown in Fig. Each cell requires two AND gates and one

OR gate. The inverters for Aj and Kj are needed once for each column and are used for all bits

in the column. The output of all OR gates in the cells of the same word go to the input of a

common AND gate to generate the match signal for Mi. Mi will be logic 1 if a match occurs

and 0 if no match occurs. Note that if the key register contains all 0’s, output Mi will be a 1

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 14 KNREDDY

irrespective of the value of A or the word. This

occurrence must be avoided during normal

operation.

READ OPERATION

 If more than one word in memory matches the

unmasked argument field, all the matched words

will have 1’s in the corresponding bit position of

the match register. It is then necessary to scan the bits of the match register one at a time. The

matched words are read in sequence by applying a read signal to each word line whose

corresponding Mi bit is a 1.

 In most applications, the associative memory stores a table with no two identical items under a

given key. In this case, only one word may match the unmasked argument field. By connecting

output Mi directly to the read line in the same word position (instead of the M register), the

content of the matched word will be presented automatically at the output lines and no

specialread command signal is needed.

WRITE OPERATION

 An associative memory must have a write capability for storing the information to be searched.

 Writing in an associative memory can take different forms, depending on the application. If the

entire memory is loaded with new information at once prior to a search operation then the

writing can be done by addressing each location in sequence. This will make the device a

random-access memory for writing and a content addressable memory for reading. The

advantage here is that the address for input can be decoded as in a random-access memory.

Thus instead of having m address lines, one for each word in memory, the number of address

lines can be reduced by the decoder to d lines, where m = 2d.

 If unwanted words have to be deleted and new words inserted one at a time, there is a need for a

special register to distinguish between active and inactive words. This register, sometimes

called a tag register.

 For every active word stored in memory, the corresponding bit in the tag register is set to 1. A

word is deleted from memory by clearing its tag bit to 0.

 Words are stored in memory by scanning the tag register until the first 0 bit is encountered. This

gives the first available inactive word and a position for writing a new word. After the new

word is stored in memory it is made active by setting its tag bit to 1. An unwanted word when

deleted from memory can be cleared to all 0’s if this value is used to specify an empty location.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 15 KNREDDY

CACHE MEMORY

 Locality of Reference: The references to memory at any given time interval tends to be

confined within a localized area.

 When a program loop is executed, the CPU repeatedly refers to the set of instructions in

memory that constitute the loop.

 Every time a given subroutine is called, its set of instructions is fetched from memory. Thus

loops and subroutines tend to localize the references to memory for fetching instructions.

 Iterative procedures refer to common memory locations and array of numbers are confined

within a local portion of memory

 If the active portions of the program and data are placed in a fast small memory, the average

memory access time can be reduced, thus reducing the total execution time of the program.

Such a fast small memory is referred to as a cache memory. The cache is the fastest component

in the memory hierarchy and approaches the speed of CPU components.

 When the CPU needs to access memory, the cache is examined. If the word is found in the

cache, it is read from the fast memory. If the word addressed by the CPU is not found in the

cache, the main memory is accessed to read the word. A block of words containing the one just

accessed is then transferred from main memory to cache memory

 The performance of cache memory is frequently measured in terms of a quantity called

hit ratio. When the CPU refers to memory and finds the word in cache, it is said to produce a

hit. If the word is not found in cache, it is in main memory and it counts as a miss. The ratio of

the number of hits divided by the total CPU references to memory (hits plus misses) is the

hit ratio.

 The average memory access time of a computer system can be improved considerably by use of

a cache.

 The transformation of data from main memory to cache memory is referred to as a mapping

process. Three types of mapping procedures are :

1. Associative mapping

2. Direct mapping

3. Set-associative mapping.

 Consider the following memory organization:

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 16 KNREDDY

ASSOCIATIVE MAPPING

 The faster and most flexible cache organization use an associative memory. The associative

memory stores both the address and content (data) of the memory word. This permits any

location in cache to store any word from main memory.

 A CPU address of 15 bits is placed in the argument register and

the associative memory is searched for a matching address. If

the address is found, the corresponding 12-bit data is read and

sent to the CPU.

 If no match occurs, the main memory is accessed for the word.

The address-data pair is then transferred to the associative cache

memory. If the cache is full, an address−data pair must be

displaced to make room for a pair that is needed and not

presently in the cache.

 The decision as to what pair is replaced is determined from the replacement algorithm that the

designer chooses for the cache. A simple procedure is to replace cells of the cache in round-

robin order whenever a new word is requested from main memory. This constitutes a first-in

first-out (FIFO) replacement policy.

DIRECT MAPPING

 Associative memories are expensive compared to random-access memories because of the

added logic associated with each cell.

 Direct mapping uses RAM instead of CAM.

 The n-bit memory address is divided into two

fields: k bits for the index field and n-k bits for

the tag field. The direct mapping cache

organization uses the n-bit address to access the

main memory and the k-bit index to access the

cache.

 The internal organization of the words in the cache

memory is as shown in Fig

 Each word in cache consists of the data word and its

associated tag. When a new word is first brought into

the cache, the tag bits are stored alongside the data bits.

When the CPU generates a memory request, the index

field is used for the address to access the cache.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 17 KNREDDY

 The tag field of the CPU address is compared with the tag in the word read from the cache. If

the two tags match, there is a hit and the desired data word is in cache. If there is no match,

there is a miss and the required word is read from main memory. It is then stored in the cache

together with the new tag, replacing the previous value.

 The disadvantage of direct mapping is that the hit ratio can drop considerably if two or more

words whose addresses have the same index but different tags are accessed repeatedly.

 Suppose that the CPU now wants to access the word at address 02000. The index address is

000, so it is sued to access the cache. The two tags are then compared. The cache tag is 00 but

the address tag is 02, which does not produce a match. Therefore, the main memory is accessed

and the data word 5670 is transferred to the CPU. The cache word at index address 000 is then

replaced with a tag of 02 and data of 5670.

 The direct-mapping uses a block size of one word. The same organization but using a block size

of 8 words is shown in Fig.

 The index field is now divided into two parts: the block

field and the word field. The tag field stored within the

cache is common to all eight words of the same block.

 Every time a miss occurs, an entire block of eight words

must be transferred from main memory to cache

memory. Although this takes extra time, the hit ratio

will most likely improve with a larger block size

because of the sequential nature of computer programs.

SET-ASSOCIATIVE MAPPING

 Set-associative mapping is an improvement over the direct-mapping organization in that each

word of cache can store two or more words of memory under the same index address.

 Each data word is stored together with its tag and the number of

tag-data items in one word of cache is said to form a set.

 Each index address refers to two data words and their associated

tags. Each tag requires six bits and each data word has 12 bits, so

the word length is 2(6 + 12) = 36 bits. An index address of nine

bits can accommodate 512 words. Thus the size of cache

memory is 512 × 36. It can accommodate 1024

 The words stored at addresses 01000 and 02000 of main memory are stored in cache memory at

index address 000. Similarly, the words at addresses 02777 and 00777 are stored in cache at

index address 777.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 18 KNREDDY

 When the CPU generates a memory request, the index value of the address is used to access the

cache. The tag field of the CPU address is then compared with both tags in the cache to

determine if a match occurs.

 The hit ratio will improve as the set size increases because more words with the same index but

different tags can reside in cache.

 When a miss occurs in a set-associative cache and the set is full, it is necessary to replace one of

the tag-data items with a new value. The most common replacement algorithms used are:

random replacement, first-in first out (FIFO), and least recently used (LRU).

WRITING INTO CACHE

 An important aspect of cache organization is concerned with memory write requests. If the

operation is a write, there are two ways that the system can proceed.

 The simplest and most commonly used procedure is to up data main memory with every

memory write operation, with cache memory being updated in parallel if it contains the word at

the specified address. This is called the write-through method. This method has the advantage

that main memory always contains the same data as the cache,. This characteristic is important

in systems with direct memory access transfers.

 The second procedure is called the write-back method. In this method only the cache location is

updated during a write operation. The location is then marked by a flag so that later when the

words are removed from the cache it is copied into main memory. The reason for the write-back

method is that during the time a word resides in the cache, it may be updated several times;

however, as long as the word remains in the cache, it does not matter whether the copy in main

memory is out of date, since requests from the word are filled from the cache. It is only when

the word is displaced from the cache that an accurate copy need be rewritten into main memory.

CACHE INITIALIZATION

 The cache is initialized when power is applied to the computer or when the main memory is

loaded with a complete set of programs from auxiliary memory. After initialization the cache is

considered to be empty, built in effect it contains some non-valid data. It is customary to

include with each word in cache a valid bit to indicate whether or not the word contains valid

data.

 The cache is initialized by clearing all the valid bits to 0. The valid bit of a particular cache

word is set to 1 the first time this word is loaded from main memory and stays set unless the

cache has to be initialized again. The introduction of the valid bit means that a word in cache is

initialization condition has the effect of forcing misses from the cache until it fills with valid

data.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 19 KNREDDY

VIRTUAL MEMORY

 In a memory hierarchy system, programs and data are brought into main memory as they are

needed by the CPU.

 Virtual memory is a concept used in some large computer systems that permit the user to

construct programs as though a large memory space were available, equal to the totality of

auxiliary memory.

 A virtual memory system provides a mechanism for translating program-generated addresses

into correct main memory locations. This is done dynamically, while programs are being

executed in the CPU. The translation or mapping is handled automatically by the hardware by

means of a mapping table.

ADDRESS SPACE AND MEMORY SPACE

 An address used by a programmer will be called a virtual address, and the set of such addresses

the address space.

 An address in main memory is called a location or physical address. The set of such locations is

called the memory space.

 In most computers the address and memory spaces are identical. The address space is allowed

to be larger than the memory space in computers with virtual memory.

 As an illustration, consider a computer with a main-memory capacity of 32K words (K =1024).

Fifteen bits are needed to specify a physical address in memory since 32K = 215. Suppose that

the computer has available auxiliary memory for storing 220 = 1024K words. Thus auxiliary

memory has a capacity for storing information equivalent to the capacity of 32 main memories.

 Denoting the address space by N and the memory space by M, we then have for this example N

= 1024K and M = 32K.

 In a multiprogram computer system, programs and data are transferred to and from auxiliary

memory and main memory based on demands imposed by the CPU. Suppose that program 1 is

currently being executed in the CPU. Program 1 and a portion of its associated data is moved

from auxiliary memory into main memory as shown in Fig.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 20 KNREDDY

 Portions of programs and data need not be in contiguous locations in memory since information

is being moved in and out, and empty spaces may be available in scattered locations in memory.

 The address field of an instruction code will

consist of 20 bits but physical memory

addresses must be specified with only 15

bits.

 A table is then needed, to map a virtual

address of 20 bits to a physical address of 15

bits. The mapping is a dynamic operation,

which means that every address is translated immediately as a word is referenced by CPU.

 The mapping table may be stored in a separate memory or in main memory. In the first case, an

additional memory unit is required as well as one extra memory access time. In the second case,

the table takes space from main memory and two accesses to memory are required with the

program running at half speed. A third alternative is to use an associative memory.

ADDRESS MAPPING USING PAGES

 The table implementation of the address mapping is simplified if the information in the address

space and the memory space are each divided into groups of fixed size. The physical memory is

broken down into groups of equal size called blocks, which may range from 64 to 4096 words

each. The term page refers to groups of address space of the same size.

 A page refers to the organization of address space, while a block refers to the organization of

memory space. The programs are also considered to be split into pages. Portions of programs

are moved from auxiliary memory to main memory in records equal to the size of a page. The

term “page frame” is sometimes used to denote a block.

Consider a computer with an address space of 8K

and a memory space of 4K. If we split each into

groups of 1K words we obtain eight pages and four

blocks as shown in Fig.

 At any given time, up to four pages of address space

may reside in main memory in any one of the four

blocks.

 The mapping from address space to memory space is

facilitated if each virtual address is considered to be

represented by two numbers: a page number address and a line within the page.

 In a computer with 2p words per page, p bits are used to specify a line address and the

remaining high-order bits of the virtual address specify the page number.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 21 KNREDDY

 Note that the line address in address space and memory space is the same; the only mapping

required is from a page number to a block number

 The organization of the memory mapping table in a paged system is shown in Fig.

 The memory-page table consists of eight

words, one for each page. The address in

the page table denotes the page number

and the content of the word gives the

block number where that page is stored

in main memory. The table shows that

pages 1, 2, 5 and 6 are now available in

main memory in blocks 3, 0, 1, and 2,

respectively. A presence bit in each

location indicates whether the page has

been transferred from auxiliary memory

into main memory. A 0 in the presence

bit indicates that this page is not available in main memory. The CPU references a word in

memory with a virtual address of 13 bits. The three high-order bits of the virtual address specify

a page number and also an address for the memory-page table. The content of the word in the

memory page table at the page number address is read out into the memory table buffer register.

If the presence bit is a 1, the block number thus read is transferred to the two high-order bits of

the main memory address register. The line number from the virtual address is transferred into

the 10 low order bits of the memory address register. A read signal to main memory transfers

the content of the word to the main memory buffer register ready to be used by the CPU. If the

presence bit in the word read from the page table is 0, it signifies that the content of the word

referenced by the virtual address does not reside in main memory. A call to the operating

system is then generated to fetch the required page from auxiliary memory and place it into

main memory before resuming computation.

ASSOCIATIVE MEMORY PAGE TABLE

 A random-access memory page table is inefficient with respect to storage utilization.

 In general, system with n pages and m blocks would require a memory page table of n locations

of which up to m blocks will be marked with block numbers and all others will be empty.

 Consider an address space of 1024K words and memory space of 32K words. If each page or

block contains 1K words, the number of pages is 1024 and the number of blocks 32. The

capacity of the memory-page table must be 1024 words and only 32 locations may have a

presence bit equal to 1. At any given time, at least 992 locations will be empty and not in use.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 22 KNREDDY

 A more efficient way to organize the page table would be to construct it with a number of

words equal to the number of blocks in main memory.

 This method can be implemented by means of an associative memory with each word in

memory containing a page number together with its corresponding block number. The page

field in each word is compared with the page number in the virtual address. If a match occurs,

the word is read from memory and its corresponding block number is extracted.

 Consider the case of eight pages and four blocks.

 Each entry in the associative memory array consists of

two fields. The first three bits specify a field for storing

the page number. The last two bits constitute a field for

storing the block number. The virtual address is placed

in the argument register. The page number bits in the

argument are compared with all page numbers in the

page field of the associative memory. If the page

number is found, the 5-bit word is read out from

memory. The corresponding block number, being in the

same word, is transferred to the main memory address

register. If no match occurs, a call to the operating system is generated to bring the required

page from auxiliary memory.

PAGE REPLACEMENT

 A virtual memory system is a combination of hardware and software techniques. The memory

management software system handles all the software operations for the efficient utilization of

memory space. It must decide (1) which page in main memory ought to be removed to make

room for a new page, (2) when a new page is to be transferred from auxiliary memory to main

memory, and (3) where the page is to be placed in main memory.

 The hardware mapping mechanism and the memory management software together constitute

the architecture of a virtual memory.

 When a program starts execution, one or more pages are transferred into main memory and the

page table is set to indicate their position. The program is executed from main memory until it

attempts to reference a page that is still in auxiliary memory. This condition is called page

fault. When page fault occurs, the execution of the present program is suspended until the

required page is brought into main memory. Since loading a page from auxiliary memory to

main memory is basically an I/O operation, the operating system assigns this task to the I/O

processor.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 23 KNREDDY

 In the meantime, controls transferred to the next program in memory that is waiting to be

processed in the CPU. Later, when the memory block has been assigned and the transfer

completed, the original program can resume its operation.

 When a page fault occurs in a virtual memory system, it signifies that the page referenced by

the CPU is not in main memory. A new page is then transferred from auxiliary memory to main

memory. If main memory is full, it would be necessary to remove a page from a memory block

to make room for the new page. The policy for choosing pages to remove is determined from

the replacement algorithm that is used.

 Two of the most common replacement algorithms used are the first-in first-out (FIFO) and the

least recently used (LRU). The FIFO algorithm selects for replacement the page that has been in

memory the longest time. Each time a page is loaded into memory, its identification number is

pushed into a FIFO stack. FIFO will be full whenever memory has no more empty blocks.

When a new page must be loaded, the page least recently brought in is removed. The page to be

removed is easily determined because its identification number is at the top of the FIFO stack.

The FIFO replacement policy has the advantage of being easy to implement. It has the

disadvantages that under certain circum-stances pages are removed and loaded form memory

too frequently.

 The LRU policy is more difficult to implement but has been more attractive on the assumption

that the least recently used page is a better candidate for removal than the least recently loaded

pages in FIFO. The LRU algorithm can be implemented by associating a counter with every

page that is in main memory. When a page is referenced, its associated counter is set to zero. At

fixed intervals of time, the counters associated with all pages presently in memory are

incremented by 1. The least recently used page is the page with the highest count. The counters

are often called aging registers, as their count indicates their age, that is, how long ago their

associated pages have been referenced.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 24 KNREDDY

PERIPHERAL DEVICES

 The input-output subsystem of a computer, referred to as I/O, provides an efficient mode of

communication between the central system and the outside environment

 Input or output devices attached to the computer are also called peripherals.

 Input Devices

Keyboard

Optical input devices

- Card Reader

- Bar code reader

- Digitizer

- Optical Mark Reader

Screen Input Devices

- Touch Screen

- Light Pen

- Mouse

Analog Input Devices

 Output Devices

CRT

Printer (Impact, Ink Jet, Laser, Dot Matrix)

Plotter

Speakers

 Input and output devices that communicate with people and the computer are usually involved

in the transfer of alphanumeric information to and from the device and the computer is ASCII

(American Standard Code for Information Interchange).

 ASCII is a 7 bit code, but most computers manipulate an 8-bit quantity as a single unit called a

byte. Therefore, ASCII characters most often are stored one per byte.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 25 KNREDDY

INPUT-OUTPUT INTERFACE

 Input-output interface provides a method for transferring information between internal storage

and external I/O devices. Peripherals connected to a computer need special communication

links for interfacing them with the central processing unit. The purpose of the communication

link is to resolve the differences that exist between the central computer and each peripheral.

The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their manner of operation

is different from the operation of the CPU and memory, which are electronic devices.

Therefore, a conversion of signal values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer rate of the CPU, and

consequently, a synchronization mechanism may be need.

3. Data codes and formats in peripherals differ from the word format in the CPU and memory.

4. The operating modes of peripherals are different from each other and each must be controlled

so as not to disturb the operation of other peripherals connected to the CPU.

 To resolve these differences, computer systems include special hardware components between

the CPU and peripherals to supervise and synchronize all input and output transfers. These

components are called interface units because they interface between the processor bus and the

peripheral device. In addition, each device may have its own controller that supervises the

operations of the particular mechanism in the peripheral.

I/O BUS AND INTERFACE MODULES

 A typical communication link between the processor and several peripherals is shown in Fig.

 The I/O bus consists of data lines, address lines, and control lines.

 Each peripheral device has associated with

it an interface unit. Each interface decodes

the address and control received from the

I/O bus, interprets them for the peripheral,

and provides signals for the peripheral

controller. It also synchronizes the data

flow and supervises the transfer between peripheral and processor. Each peripheral has its own

controller that operates the particular electromechanical device.

 To communicate with a particular device, the processor places a device address on the address

lines. Each interface attached to the I/O bus contains an address decoder that monitors the

address lines. When the interface detects its own address, it activates the path between the bus

lines and the device that it controls. All peripherals whose address does not correspond to the

address in the bus are disabled their interface.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 26 KNREDDY

 At the same time the processor provides a function code in the control lines.

 There are four types of commands that an interface may receive. They are classified as control,

status, data output, and data input.

 A control command is issued to activate the peripheral and to inform it what to do.

 A status command is used to test various status conditions in the interface and the peripheral.

 A data output command causes the interface to respond by transferring data from the bus into

one of its registers.

 The data input command is the opposite of the data output. In this case the interface receives an

item of data from the peripheral and places it in its buffer register.

I/O VERSUS MEMORY BUS

 In addition to communicating with I/O, the processor must communicate with the memory unit.

Like the I/O bus, the memory bus contains data, address, and read/write control lines. There are

three ways that computer buses can be used to communicate with memory and I/O:

1. Use two separate buses, one for memory and the other for I/O.

2. Use one common bus for both memory and I/O but have separate control lines for each.

3. Use one common bus for memory and I/O with common control lines.

In the first method, the computer has independent sets of data, address, and control buses, one

for accessing memory and the other for I/O. This is done in computers that provide a separate

I/O processor (IOP) in addition to the central processing unit (CPU). The memory

communicates with both the CPU and the IOP through a memory bus. The IOP communicates

also with the input and output devices through a separate I/O bus with its own address, data and

control lines. The purpose of the IOP is to provide an independent pathway for the transfer of

information between external devices and internal memory

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 27 KNREDDY

ISOLATED VERSUS MEMORY-MAPPED I/O

 Many computers use one common bus to transfer information between memory or I/O and the

CPU. The distinction between a memory transfer and I/O transfer is made through separate read

and write lines. The CPU specifies whether the address on the address lines is for a memory

word or for an interface register by enabling one of two possible read or write lines. The I/O

read and I/O write control lines are enabled during an I/O transfer. The memory read and

memory write control lines are enabled during a memory transfer.

 In the isolated I/O configuration, the CPU has distinct input and output instructions, and each

of these instructions is associated with the address of an interface register. When the CPU

fetches and decodes the operation code of an input or output instruction, it places the address

associated with the instruction into the common address lines. At the same time, it enables the

I/O read (for input) or I/O write (for output) control line. This informs the external components

that are attached to the common bus that the address in the address lines is for an interface

register and not for a memory word. On the other hand, when the CPU is fetching an instruction

or an operand from memory, it places the memory address on the address lines and enables the

memory read or memory write control line. This informs the external components that the

address is for a memory word and not for an I/O interface.

 The other alternative is to use the same address space for both memory and I/O. This is the case

in computers that employ only one set of read and write signals and do not distinguish between

memory and I/O addresses. This configuration is referred to as memory mapped I/O. The

computer treats an interface register as being part of the memory system.

 In a memory-mapped I/O organization there is no specific input or output instructions. The

CPU can manipulate I/O data residing in interface registers with the same instructions that are

used to manipulate memory words. Each interface is organized as a set of registers that respond

to read and write requests in the normal address space. Typically, a segment of the total address

space is reserved for interface registers, but in general, they can be located at any address as

long as there is not also a memory word that responds to the same address.

 Computers with memory-mapped I/O can use memory-type instructions to access I/O data. It

allows the computer to use the same instructions for either input-output transfers or for memory

transfers.

 The advantage is that the load and store instructions used for reading and writing from memory

can be used to input and output data from I/O registers.

 In a typical computer, there are more memory-reference instructions than I/O instructions. With

memory mapped I/O all instructions that refer to memory are also available for I/O. .

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 28 KNREDDY

EXAMPLE OF I/O INTERFACE

 An example of an I/O interface unit is shown in block diagram

 It consists of two data registers called ports, a control register, a status register, bus buffers, and

timing and control circuits. The interface communicates with the CPU through the data bus.

 The chip select and register select inputs determine the address assigned to the interface. The

I/O read and write are two control lines that specify an input or output, respectively.

 The four registers communicate directly with the I/O device attached to the interface. The I/O

data to and from the device can be transferred into either port A or Port B.

 The interface may operate with an output device or with an input device, or with a device that

requires both input and output..

 A command is passed to the I/O device by sending a word to the appropriate interface register.

In a system like this, the function code in the I/O bus is not needed because control is sent to the

control register, status information is received from the status register, and data are transferred

to and from ports A and B registers. Thus the transfer of data, control, and status information is

always via the common data bus.

 The distinction between data, control, or status information is determined from the particular

register with which the CPU communicates.

 The control register receives control information from the CPU. By loading appropriate bits

into the control register, the interface and the I/O device attached to it can be placed in a variety

of operating modes.

 The interface registers communicate with the CPU through the bidirectional data bus.

 The address bus selects the interface unit through the chip select and the two register select

inputs. A circuit must be provided externally (usually, a decoder) to detect the address assigned

to the interface registers. This circuit enables the chip select (CS) input when the interface is

selected by the address bus. The two register select inputs RS1 and RS0 are usually connected

to the two least significant lines of the lines address bus. These two inputs select one of the four

registers in the interface as specified in the table accompanying the diagram.

 The content of the selected register is transfer into the CPU via the data bus when the I/O read

signal is enabled. The CPU transfers binary information into the selected register via the data

bus when the I/O write input is enabled.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 29 KNREDDY

ASYNCHRONOUS DATA TRANSFER

 The internal operations in a digital system are synchronized by means of clock pulses supplied

by a common pulse generator.

 If the registers in the interface share a common clock with the CPU registers, the transfer

between the two units is said to be synchronous.

 In most cases, the internal timing in each unit is independent from the other in that each uses its

own private clock for internal registers. In that case, the two units are said to be asynchronous

to each other.

 Asynchronous data transfer between two independent units requires that control signals be

transmitted between the communicating units to indicate the time at which data is being

transmitted.

 One way of achieving this is by means of a strobe pulse supplied by one of the units to indicate

to the other unit when the transfer has to occur. Another method commonly used is to

accompany each data item being transferred with a control signal that indicates the presence of

data in the bus. The unit receiving the data item responds with another control signal to

acknowledge receipt of the data. This type of agreement between two independent units is

referred to as handshaking.

STROBE CONTROL

 The strobe control method of asynchronous data transfer employs a single control line to time

each transfer. The strobe may be activated by either the source or the destination unit.

 The data bus carries the binary information from

source unit to the destination unit. Typically, the

bus has multiple lines to transfer an entire byte or

word. The strobe is a single line that informs the

destination unit when a valid data word is

available in the bus.

 As shown in the timing diagram the source unit

first places the data on the data bus. After a brief

delay to ensure that the data settle to a steady

value, the source activates the strobe pulse.

 The information on the data bus and the strobe signal remain in the active state for a sufficient

time period to allow the destination unit to receive the data. Often, the destination unit uses the

falling edge of the strobe pulse to transfer the contents of the data bus into one of its internal

registers.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 30 KNREDDY

 The following Figure shows a data transfer initiated by the destination unit.

 In this case the destination unit activates the strobe pulse,

informing the source to provide the data. The source unit

responds by placing the requested binary information on

the data bus. The data must be valid and remain in the

bus long enough for the destination unit to accept it. The

falling edge of the strobe pulse can be used again to

trigger a destination register. The destination unit then

disables the strobe

 The transfer of data between the CPU and an interface unit is similar to the strobe transfer. Data

transfer between an interface and an I/O device is commonly controlled by a set of handshaking

lines

HANDSHAKING

 The disadvantage of the strobe method is that the source unit that initiates the transfer has no

way of knowing whether the destination unit has actually received the data item that was placed

in the bus. Similarly, a destination unit that initiates the transfer has no way of knowing whether

the source unit has actually placed the data on the bus. The handshake method solves this

problem by introducing a second control signal that provides a reply to the unit that initiates the

transfer.

 The basic principle of the handshaking method of data transfer is as follows. One control line is

in the same direction as the data flow in the bus from the source to the destination. It is used by

the source unit to inform the destination unit whether there are valued data in the bus.

 The other control line is in the other direction from the destination to the source. It is used by

the destination unit to inform the source whether it can accept data. The sequence of control

during the transfer depends on the unit that initiates the transfer.

 The two handshaking lines are data valid, which is generated by the source unit, and data

accepted, generated by the destination unit.

 The timing diagram shows the exchange of signals between the two units. In the destination-

initiated transfer the source does not place data on the bus until after it receives the ready for

data signal from the destination unit.

 The handshaking scheme provides a high degree of flexibility and reality because the successful

completion of a data transfer relies on active participation by both units. If one unit is faulty, the

data transfer will not be completed. Such an error can be detected by means of a timeout

mechanism, which produces an alarm if the data transfer is not completed within a

predetermined time. The timeout is implemented by means of an internal clock that starts

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 31 KNREDDY

counting time when the unit enables one of its handshaking control signals. If the return

handshake signal does not respond within a given time period, the unit assumes that an error

has occurred

ASYNCHRONOUS SERIAL TRANSFER

 The transfer of data between two units may be done in parallel or serial. In parallel data

transmission, each bit of the message has its own path and the total message is transmitted at

the same time.

 In serial data transmission, each bit in the message is sent in sequence one at a time.

 Parallel transmission is faster but requires many wires. It is used for short distances and where

speed is important. Serial transmission is slower but is less expensive since it requires only one

pair of conductors.

 Serial transmission can be synchronous or asynchronous. In synchronous transmission, the two

units share a common clock frequency and bits are transmitted continuously at the rate dictated

by the clock pulses. In long-distant serial transmission, each unit is driven by a separate clock

of the same frequency. Synchronization signals are transmitted periodically between the two

units to keep their clocks in step with each other.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 32 KNREDDY

 In asynchronous transmission, binary information is sent only when it is available and the line

remains idle when there is no information to be transmitted.

 Serial asynchronous data transmission technique used in many interactive terminals employs

special bits that are inserted at both ends of the character code. With this technique, each

character consists of three parts: a start bit, the character bits, and stop bits.

 The convention is that the transmitter rests at the 1-state when no characters are transmitted.

The first bit, called the start bit, is always a 0 and is used to indicate the beginning of a

character. The last bit called the stop bit is always a 1.

 An example of this format is shown in Fig.

 A transmitted character can be detected by the receiver from knowledge of the transmission

rules:

1. When a character is not being sent, the line is kept in the 1-state.

2. The initiation of a character transmission is detected from the start bit, which is always 0.

3. The character bits always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected when the line returns to

the 1-state for at least one bit time.

 Using these rules, the receiver can detect the start bit when the line gives from 1 to 0. A clock in

the receiver examines the line at proper bit times. The receiver knows the transfer rate of the

bits and the number of character bits to accept. After the character bits are transmitted, one or

two stop bits are sent. The stop bits are always in the 1-state and frame the end of the character

to signify the idle or wait state.

 At the end of the character the line is held at the 1-state for a period of at least one or two bit

times so that both the transmitter and receiver can resynchronize. The length of time that the

line stays in this state depends on the amount of time required for the equipment to

resynchronize.

 Some older electromechanical terminals use two stop bits, but newer terminals use one stop bit.

 The line remains in the 1-state until another character is transmitted. The stop time ensures that

a new character will not follow for one or two bit times.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 33 KNREDDY

Asynchronous Communication Interface

 The block diagram of an asynchronous communication interface is shown in Fig.

 It functions as both a transmitter and a receiver. The interface is initialized for a particular mode

of transfer by means of a control byte that is loaded into its control register. The transmitter

register accepts a data byte from the CPU through the data bus. This byte is transferred to a

shift register for serial transmission. The receiver portion receives serial information into

another shift register, and when a complete data byte is accumulated, it is transferred to the

receiver register. The CPU can select the receiver register to read the byte through the data bus.

 The bits in the status register are used for input and output flags and for recording certain errors

that may occur during the transmission. The CPU can read the status register to check the status

of the flag bits and to determine if any errors have occurred.

 The chip select and the read and write control lines communicate with the CPU. The chip select

(CS) input is used to select the interface through the address bus. The register select (RS) is

associated with the read (RD) and write (WR) controls. Two registers are write-only and two

are read-only. The register selected is a function of the RS value and the RD and WR status, as

listed in the table accompanying the diagram.

 The operation of the asynchronous communication interface is initialized by the CPU by

sending a byte to the control register. The initialization procedure places the interface in a

specific mode of operation as it defines certain parameters such as the baud rate to use, how

many bits are in each character, whether to generate and check parity, and how many stop bits

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 34 KNREDDY

are appended to each character. Two bits in the status register are used as flags. One bit is used

to indicate whether the transmitter register is empty and another bit is used to indicate whether

the receiver register is full.

 The operation of the transmitter portion of the interface is as follows. The CPU reads the status

register and checks the flag to see if the transmitter register is empty. If it is empty, the CPU

transfers a character to the transmitter register and the interface clears the flag to mark the

register full. The first bit in the transmitter shift register is set to 0 to generate a start bit. The

character is transferred in parallel from the transmitter register to the shift register and the

appropriate number of stop bits are appended into the shift register. The transmitter register is

then marked empty. The character can now be transmitted one bit at a time by shifting the data

in the shift register at the specified baud rate. The CPU can transfer another character to the

transmitter register after checking the flag in the status register. The interface is said to be

double buffered because a new character can be loaded as soon as the previous one starts

transmission.

 The operation of the receiver portion of the interface is similar. The receive data input is in the

1-state when the line is idle. The receiver control monitors the receive-data line for a 0 signal

to detect the occurrence of a start bit. Once a start bit has been detected, the incoming bits of the

character are shifted into the shift register at the prescribed baud rate. After receiving the data

bits, the interface checks for the parity and stop bits. The character without the start and stop

bits is then transferred in parallel from the shift register to the receiver register. The flag in the

status register is set to indicate that the receiver register is full. The CPU reads the status

register and checks the flag, and if set, it reads the data from the receiver register. The interface

checks for any possible errors during transmission and sets appropriate bits in the status

register. The CPU can read the status register at any time to check if any errors have occurred.

Three possible errors that the interface checks during transmission are parity error, framing

error, and overrun error. Parity error occurs if the number of l's in the received data is not the

correct parity. A framing error occurs if the right number of stop bits is not detected at the end

of the received character. An overrun error occurs if the CPU does not read the character from

the receiver register before the next one becomes available in the shift register. Overrun error

results in a loss of characters in the received data stream.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 35 KNREDDY

First-In, First-Out Buffer

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 36 KNREDDY

MODES OF TRANSFER

 Binary information received from an external device is usually stored in memory for later

processing. Information transferred from the central computer into an external device originates

in the memory unit. The CPU merely executes the I/O instructions and may accept the data

temporarily, but the ultimate source or destination is the memory unit.

 Data transfer between the central computer and I/O devices may be handled in a variety of

modes. Some modes use the CPU as an intermediate path; other transfer the data directly to and

from the memory unit.

 Data transfer to and from peripherals may be handled in one of three possible modes:

1. Programmed I/O

2. Interrupt-initiated I/O

3. Direct memory access (DMA)

 Programmed I/O operations are the result of I/O instructions written in the computer program.

Each data item transfer is initiated by an instruction in the program. Usually, the transfer is to

and from a CPU register and peripheral. Other instructions are needed to transfer the data to and

from CPU and memory. Transferring data under program control requires constant monitoring

of the peripheral by the CPU. Once a data transfer is initiated, the CPU is required to monitor

the interface to see when a transfer can again be made. It is up to the programmed instructions

executed in the CPU to keep close tabs on everything that is taking place in the interface unit

and the I/O device.

 In the programmed I/O method, the CPU stays in a program loop until the I/O unit indicates

that it is ready for data transfer. This is a time-consuming process since it keeps the processor

busy needlessly. It can be avoided by using an interrupt facility and special commands to

inform the interface to issue an interrupt request signal when the data are available from the

device. In the meantime the CU can proceed to execute another program. The interface

meanwhile keeps monitoring the device. When the interface determines that the device is ready

for data transfer, it generates an interrupt request to the computer. Upon detecting the external

interrupt signal, the CPU momentarily stops the task it is processing, branches to a service

program to process the I/O transfer, and then returns to the task it was originally performing

Transfer of data under programmed I/O is between CPU and peripheral.

 In direct memory access (DMA), the interface transfers data into and out of the memory unit

through the memory bus. The CPU initiates the transfer by supplying the interface with the

starting address and the number of words needed to be transferred and then proceeds to execute

other tasks. When the transfer is made, the DMA requests memory cycles through the memory

bus. When the request is granted by the memory controller, the DMA transfers the data directly

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 37 KNREDDY

into memory. The CPU merely delays its memory access operation to allow the direct memory

I/O transfer. Since peripheral speed is usually slower than processor speed, I/O-memory

transfers are infrequent compared to processor access to memory.

 Many computers combine the interface logic with the requirements for direct memory access

into one unit and call it an I/O processor (IOP). The IOP can handle many peripherals through a

DMPA and interrupt facility. In such a system, the computer is divided into three separate

modules: the memory unit, the CPU, and the IOP.

EXAMPLE OF PROGRAMMED I/O

 In the programmed I/O method, the I/O device does not have direct access to memory. A

transfer from an I/O device to memory requires the execution of several instructions by the

CPU, including an input instruction to transfer the data from the device to the CPU, and a store

instruction to transfer the data from the CPU to memory. Other instructions may be needed to

verify that the data are available from the device and to count the numbers of words transferred.

 An example of data transfer from an I/O device through an interface into the CPU is shown in

Fig.

 The device transfers bytes of data one at a time as they are available. When a byte of data is

available, the device places it in the I/O bus and enables its data valid line. The interface accepts

the byte into its data register and enables the data accepted line. The interface sets a bit in the

status register that we will refer to as an F or “flag” bit. The device can now disable the data

valid line, but it will not transfer another byte until the data accepted line is disabled by the

interface.

 A program is written for the computer to check the flag in the status register to determine if a

byte has been placed in the data register by the I/O device. This is done by reading the status

register into a CPU register and checking the value of the flag bit. If the flag is equal to 1, the

CPU reads the data from the data register. The flag bit is then cleared to 0 by either the CPU or

the interface, depending on how the interface circuits are designed. Once the flag is cleared, the

interface disables the data accepted line and the device can then transfer the next data byte.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 38 KNREDDY

 A flowchart of the program that must be written for the CPU is shown in Fig.

It is assumed that the device is sending

a sequence of bytes that must be

stored in memory. The transfer of each

byte requires three instructions:

1. Read the status register.

2. Check the status of the flag bit and

branch to step 1 if not set or to step 3

if set.

3. Read the data register.

 Each byte is read into a CPU register

and then transferred to memory with a

store instruction. A common I/O

programming task is to transfer a

block of words form an I/O device and

store them in a memory buffer.

 The programmed I/O method is

particularly useful in small low-speed

computers or in systems that are

dedicated to monitor a device

continuously. The difference in

information transfer rate between the CPU and the I/O device makes this type of transfer

inefficient.

INTERRUPT-INITIATED I/O

 An alternative to the CPU constantly monitoring the flag is to let the interface inform the

computer when it is ready to transfer data. This mode of transfer uses the interrupt facility.

While the CPU is running a program, it does not check the flag. However, when the flag is set,

the computer is momentarily interrupted from proceeding with the current program and is

informed of the fact that the flag has been set.

 The CPU deviates from what it is doing to take care of the input or output transfer. After the

transfer is completed, the computer returns to the previous program to continue what it was

doing before the interrupt.

 The CPU responds to the interrupt signal by storing the return address from the program

counter into a memory stack and then control branches to a service routine that processes the

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 39 KNREDDY

required I/O transfer. The way that the processor chooses the branch address of the service

routine varies from tone unit to another. In principle, there are two methods for accomplishing

this. One is called vectored interrupt and the other, no vectored interrupt. In a non vectored

interrupt, the branch address is assigned to a fixed location in memory. In a vectored interrupt,

the source that interrupts supplies the branch information to the computer. This information is

called the interrupt vector. In some computers the interrupt vector is the first address of the I/O

service routine. In other computers the interrupt vector is an address that points to a location in

memory where the beginning address of the I/O service routine is stored.

SOFTWARE CONSIDERATIONS

 The previous discussion was concerned with the basic hardware needed to interface I/O devices

to a computer system. A computer must also have software routines for controlling peripherals

and for transfer of data between the processor and peripherals. I/O routines must issue control

commands to activate the peripheral and to check the device status to determine when it is

ready for data transfer. Once ready, information is transferred item by item until all the data are

transferred. In some cases, a control command is then given to execute a device function such

as stop tape or print characters. Error checking and other useful steps often accompany the

transfers.

 In interrupt-controlled transfers, the I/O software must issue commands to the peripheral to

interrupt when ready and to service the interrupt when it occurs. In DMA transfer, the I/O

software must initiate the DMA channel to start its operation.

 Software control of input-output equipment is a complex undertaking. For this reason I/O

routines for standard peripherals are provided by the manufacturer as part of the computer

system. They are usually included within the operating system. Most operating systems are

supplied with a variety of I/O programs to support the particular line of peripherals offered for

the computer. I/O routines are usually available as operating system procedures and the user

refers to the established routines to specify the type of transfer required without going into

detailed machine language programs.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 40 KNREDDY

PRIORITY INTERRUPT

 Data transfer between the CPU and an I/O device is initiated by the CPU. The CPU cannot

start the transfer unless the device is ready to communicate with the CPU. The readiness of the

device can be determined from an interrupt signal.

 Numbers of I/O devices are attached to the computer; several sources will request service

simultaneously. The first task of the interrupt system is to identify the source of the interrupt

and decide which device to service first

 A priority interrupts is a system to determine which interrupt is to be served first when two or

more requests are made simultaneously. Also determines which interrupts are permitted to

interrupt the computer while another is being serviced. Higher priority interrupts can make

requests while servicing a lower priority interrupt

 Establishing the priority of simultaneous interrupts can be done by software or hardware.

 Priority Interrupt by Software(Polling)

- Priority is established by the order of polling the devices(interrupt sources)

- Flexible since it is established by software

- Low cost since it needs a very little hardware

- Very slow

 Priority Interrupt by Hardware

- Require a priority interrupt manager which accepts all the interrupt requests to determine

the highest priority request

- Fast since identification of the highest priority interrupt request is identified by the hardware.

Each interrupt source has its own interrupt vector to access directly to its own service routine

 The hardware priority function can be established by either a serial or a parallel connection of

interrupt lines. The serial connection is also known as the daisy chaining method.

DAISY-CHAINING PRIORITY

 The daisy-chaining method of establishing priority consists of a serial connection of all devices

that request an interrupt. The device with the highest priority is placed in the first position,

followed by lower-priority devices up to the device with the lowest priority, which is placed last

in the chain.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 41 KNREDDY

 The interrupt request line is common to all devices and forms a wired logic connection. If any

device has its interrupt signal in the low-level state, the interrupt line goes to the low-level state

and enables the interrupt input in the CPU. When no interrupts are pending, the interrupt line

stays in the high-level state and no interrupts are recognized by the CPU.

 The CPU responds to an interrupt request by enabling the interrupt acknowledge line. This

signal is received by device 1 at its PI (priority in) input. The acknowledge signal passes on to

the next device through the PO (priority out) output only if device 1 is not requesting an

interrupt.

 If device 1 has a pending interrupt, it blocks the acknowledge signal from the next device by

placing a 0 in the PO output. It then proceeds to insert its own interrupt vector address (VAD)

into the data bus for the CPU to use during the interrupt cycle.

 The device with PI = 1 and PO = 0 is the one with the highest priority that is requesting an

interrupt, and this device places its VAD on the data bus.

 The following figure shows the internal logic that must be included with in each device when

connected in the daisy-chaining scheme.

Fig: One stage of the daisy- chain priority arrangement

 The device sets its RF flip-flop when it wants to interrupt the CPU. The output of the RF flip-

flop goes through an open-collector inverter, a circuit that provides the wired logic for the

common interrupt line.

 If PI = 0, both PO and the enable line to VAD are equal to 0, irrespective of the value of RF.

 If PI = 1 and RF = 0, then PO = 1 and the vector address is disabled. This condition passes the

acknowledge signal to the next device through PO.

 The device is active when PI = 1 and RF = 1. This condition places a 0 in PO and enables the

vector address for the data bus. It is assumed that each device has its own distinct vector

address.

 The RF flip-flop is reset after a sufficient delay to ensure that the CPU has received the vector

address.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 42 KNREDDY

PARALLEL PRIORITY INTERRUPT

 The parallel priority interrupt method uses a register whose bits are set separately by the

interrupt signal from each device.

 Priority is established according to the position of the bits in the register. In addition to the

interrupt register the circuit may include a mask register whose purpose is to control the status

of each interrupt request.

 The mask register can be programmed to disable lower-priority interrupts while a higher-

priority device is being serviced. It can also provide a facility that allows a high-priority device

to interrupt the CPU while a lower-priority device is being serviced.

 The priority logic for a system of four interrupt sources is shown in Fig.

 It consists of an interrupt register whose individual bits are set by external conditions and

cleared by program instructions.

 The mask register has the same number of bits as the interrupt register. By means of program

instructions, it is possible to set or reset any bit in the mask register.

 Each interrupt bit and its corresponding mask bit are applied to an AND gate to produce the

four inputs to a priority encoder. In this way an interrupt is recognized only if its corresponding

mask bit is set to 1 by the program.

 The priority encoder generates two bits of the vector address, which is transferred to the CPU.

 Another output from the encoder sets an interrupt status flip-flop IST when an interrupt that is

not masked occurs.

 The interrupt enable flip-flop IEN can be set or cleared by the program to provide an overall

control over the interrupt system.

 The outputs of IST ANDed with IEN provide a common interrupt signal for the CPU.

 The interrupt acknowledge INTACK signal from the CPU enables the bus buffers in the output

register and a vector address VAD is placed into the data bus.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 43 KNREDDY

Priority Encoder

 The priority encoder is a circuit that implements the priority function. The logic of the priority

encoder is such that if two or more inputs arrive at the same time, the input having the highest

priority will take precedence.

Interrupt Cycle

 The interrupt enable flip-flop IEN can be set or cleared by program instructions.

 When IEN is cleared, the interrupt request coming from IST is neglected by the CPU.

 The program-controlled IEN bit allows the programmer to choose whether to use the interrupt

facility. If an instruction to clear IEN has been inserted in the program, it means that the user

does not want his program to be interrupted. An instruction to set IEN indicates that the

interrupt facility will be used while the current program is running.

 Most computers include internal hardware that clears IEN to 0 every time an interrupt is

acknowledged by the processor

 At the end of each instruction cycle the CPU checks IEN and the interrupt signal from IST. If

either is equal to 0, control continues with the next instruction.

 If both IEN and IST are equal to 1, the CPU goes to an interrupt cycle.

 During the interrupt cycle the CPU performs the following sequence of microoperations:

SP SP-1 Decrement stack pointer

M[SP] PC Push PC into stack

INTACK 1 Enable interrupt acknowledge

PC VAD Transfer vector address to PC

lEN 0 Disable further interrupts

Go to fetch next instruction

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 44 KNREDDY

Software Routines

 A priority interrupt system is a combination of hardware and software techniques

 The following figure shows the programs that must reside in memory for handling the interrupt

system.

Initial and Final Operations

 Each interrupt service routine must have an initial and final set of operations for controlling the

registers in the hardware interrupt system

 Initial Sequence

[1] Clear lower level Mask reg. bits

[2] IST 0

[3] Save contents of CPU registers

[4] IEN1

[5] Go to Interrupt Service Routine

 Final Sequence

[1] IEN 0

[2] Restore CPU registers

[3] Clear the bit in the Interrupt Reg

[4] Set lower level Mask reg. bits

[5] Restore return address into PC, and IEN 1

 The initial and final operations are referred to as overhead operations or housekeeping

chores. They are not part of the service program proper but are essential for processing

interrupts.

 All overhead operations can be implemented by software. This is done by inserting the proper

instructions at the beginning and at the end of each service routine. Some of the overhead

operations can be done automatically by the hardware

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 45 KNREDDY

DIRECT MEMORY ACCESS (DMA):

 The transfer of data between a fast storage device such as magnetic disk and memory is often

limited by the speed of the CPU. Removing the CPU from the path and letting the peripheral

device manage the memory buses directly would improve the speed of transfer. This transfer

technique is called direct memory access (DMA).

 During DMA transfer, the CPU is idle and has no control of the memory buses.

 A DMA controller takes over the buses to manage the transfer directly between the I/O device

and memory.

 The CPU may be placed in an idle state in a variety of ways. One common method extensively

used in microprocessors is to disable the buses through special control signals.

 The bus request (BR) input is used by the DMA controller to request the CPU to cease control

of the buses. When this input is active, the CPU terminates the execution of the current

instruction and places the address bus, the data bus, and the read and write lines into a high-

impedance state behaves like an open circuit, which means that the output is disconnected and

does not have a logic significance.

 The CPU activates the Bus grant (BG) output to inform the external DMA that the buses are in

the high-impedance state. The DMA that originated the bus request can now take control of the

buses to conduct memory transfers without processor intervention. When the DMA terminates

the transfer, it disables the bus request line. The CPU disables the bus grant, takes control of the

buses, and returns to its normal operation.

 When the DMA takes control of the bus system, it communicates directly with the memory.

The transfer can be made in several ways. In DMA burst transfer, a block sequence consisting

of a number of memory words is transferred in a continuous burst while the DMA controller is

master of the memory buses. This mode of transfer is needed for fast devices such as magnetic

disks, where data transmission cannot be stopped or slowed down until an entire block is

transferred.

 An alternative technique called cycle stealing allows the DMA controller to transfer one data

word at a time after which it must return control of the buses to the CPU. The CPU merely

delays its operation for one memory cycle to allow the direct memory I/O transfer to “steal” one

memory cycle.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 46 KNREDDY

DMA CONTROLLER

 The following figure shows the block diagram of a typical DMA controller

 The unit communicates with the CPU via the data bus and control lines. The registers in the

DMA are selected by the CPU through the address bus by enabling the DS (DMA select) and

RS (register select) inputs. The RD (read) and WR (write) inputs are bidirectional.

 When the BG (bus grant) input is 0, the CPU can communicate with the DMA registers through

the data bus to read from or write to the DMA registers.

 When BG = 1, the CPU has relinquished(ceased) the buses and the DMA can communicate

directly with the memory by specifying an address in the address bus and activating the RD or

WR control.

 The DMA communicates with the external peripheral through the request and acknowledge

lines by using a prescribed handshaking procedure.

 The DMA controller has three registers: an address register, a word count register, and a control

register. The address register contains an address to specify the desired location in memory. The

address bits go through bus buffers into the address bus. The address register is incremented

after each word that is transferred to memory.

 The word count register is incremented after each word that is transferred to memory. The word

count register holds the number of words to be transferred. This register is decremented by one

after each word transfer and internally tested for zero.

 The control register specifies the mode of transfer. All registers in the DMA appear to the CPU

as I/O interface registers. Thus the CPU can read from or write into the DMA registers under

program control via the data bus.

 The DMA is first initialized by the CPU. After that, the DMA starts and continues to transfer

data between memory and peripheral unit until an entire block is transferred. The initialization

process is essentially a program consisting of I/O instructions that include the address for

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 47 KNREDDY

selecting particular DMA registers. The CPU initializes the DMA by sending the following

information through the data bus:

1. The starting address of the memory block where data are available (for read) or where data are to

be stored (for write)

2. The word count, which is the number of words in the memory block

3. Control to specify the mode of transfer such as read or write

4. A control to start the DMA transfer

 The starting address is stored in the address register. The word count is stored in the word count

register, and the control information in the control register.

 Once the DMA is initialized, the CPU stops communicating with the DMA unless it receives an

interrupt signal or if it wants to check how many words have been transferred.

DMA Transfer

 The position of the DMA controller among the other components in a computer system is

illustrated in following fig.

 The CPU communicates with the DMA through the address and data buses as with any

interface unit. The DMA has its own address, which activates the DS and RS lines.

 The CPU initializes the DMA through the data bus. Once the DMA receives the start control

command, it can start the transfer between the peripheral device and the memory.

 When the peripheral device sends a DMA request, the DMA controller activates the BR line,

informing the CPU to relinquish the buses. The CPU responds with its BG line, informing the

DMA that its buses are disabled.

 The DMA then puts the current value of its address register into the address bus, initiates the

RD or WR signal, and sends a DMA acknowledge to the peripheral device.

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 48 KNREDDY

 Note that the RD and WR lines in the DMA controller are bidirectional. The direction of

transfer depends on the status of the BG line. When BG = 0, the RD and WR are input lines

allowing the CPU to communicate with the internal DMA registers. When BG = 1, the RD and

WR and output lines from the DMA controller to the random-access memory to specify the

read or write operation for the data.

 When the peripheral device receives a DMA acknowledge, it puts a word in the data bus

(for write) or receives a word from the data bus (for read). Thus the DMA controls the read or

write operations and supplies the address for the memory.

 The peripheral unit can then communicate with memory through the data bus for direct transfer

between the two units while the CPU is momentarily disabled.

 For each word that is transferred, the DMA increments its address register and decrements its

word count register. If the word count does not reach zero, the DMA checks the request line

coming from the peripheral.

 For a high-speed device, the line will be active as soon as the previous transfer is completed. A

second transfer is then initiated, and the process continues until the entire block is transferred.

 If the peripheral speed is slower, the DMA request line may come somewhat later. In this case

the DMA disables the bus request line so that the CPU can continue to execute its program.

When the peripheral requests a transfer, the DMA requests the buses again.

 If the word count register reaches zero, the DMA stops any further transfer and removes its bus

request. It also informs the CPU of the termination by means of an interrupt.

 When the CPU responds to the interrupt, it reads the content of the word count register. The

zero value of this register indicates that all the words were transferred successfully. The CPU

can read this register at any time to check the number of words already transferred.

 A DMA controller may have more than one channel. In this case, each channel has a request

and acknowledges pair of control signals which are connected to separate peripheral devices.

Each channel also has its own address register and word count register within the DMA

controller.

 A priority among the channels may be established so that channels with high priority are

serviced before channels with lower priority.

 DMA transfer is very useful in many applications.

 It is used for fast transfer of information between magnetic disks and memory.

 It is also useful for updating the display in an interactive terminal.

COMPUTER ORGANIZATION AND ARCHITECTURE

Pipeline

UNIT-V

PIPELINE AND MULTIPROCESSORS

Parallel Processing

Pipelining

Arithmetic Pipeline

Instruction Pipeline.

Multiprocessors

Characteristics of Multiprocessors

Interconnection Structures

Inter Processor Arbitration

Inter Processor Communication and Synchronization

PARALLEL PROCESSING

 A parallel processing system is able to perform concurrent data processing to achieve faster

execution time

 The system may have two or more ALUs and be able to execute two or more instructions at the

same time

 Also, the system may have two or more processors operating concurrently

 Goal is to increase the throughput – the amount of processing that can be accomplished during a

given interval of time

 Parallel processing increases the amount of hardware required

 Example: the ALU can be separated into three units and the operands diverted to each unit under the

supervision of a control unit

 All units are independent of each other

 A multifunctional organization is usually

associated with a complex control unit to

coordinate all the activities among the various

components

 Parallel processing can be classified from:

 The internal organization of the processors

 The interconnection structure between

processors

 The flow of information through the system

 The number of instructions and data items

that are manipulated simultaneously

 The sequence of instructions read from memory

is the instruction stream

 The operations performed on the data in the processor is the data stream

 Parallel processing may occur in the instruction stream, the data stream, or both

 Flynn’s Computer classification:

 Single instruction stream, single data stream – SISD

 Single instruction stream, multiple data stream – SIMD

 Multiple instruction stream, single data stream – MISD
 Multiple instruction stream, multiple data stream – MIMD

 SISD – Instructions are executed sequentially. Parallel processing may be achieved by means of

multiple functional units or by pipeline processing

 SIMD – Includes multiple processing units with a single control unit. All processors receive the

same instruction, but operate on different data.

 MIMD – A computer system capable of processing several programs at the same time.

PIPELINING

 Pipelining is a technique of decomposing a sequential process into sub operations, with each

sub process being executed in a special dedicated segment that operates concurrently with all

other segments

 Each segment performs partial processing dictated by the way the task is partitioned

 The result obtained from the computation in each segment is transferred to the next segment in

the pipeline

 The final result is obtained after the data have passed through all segments

 Each segment consists of an input register followed by an combinational circuit

 A clock is applied to all registers after enough time has elapsed to perform all segment activity

 The information flows through the pipeline one step at a time

 Example: Ai * Bi + Ci for i = 1, 2, 3, …, 7

 The sub operations performed in each segment are:

R1 ← Ai , R2 ← Bi
R3 ← R1 * R2, R4 ← Ci
R5 ← R3 + R4

 Any operation that can be decomposed into a sequence of suboperations of about the same

complexity can be implemented by a pipeline processor

 The technique is efficient for those applications that need to repeat the same task many time

with different sets of data

 The general structure of a four-segment

pipeline is as shown in fig;

 A task is the total operation performed

going through all segments of a pipeline

 The behavior of a pipeline can be illustrated with a space-time diagram

 This shows the segment utilization as a function of time

 Once the pipeline is

full, it takes only one

clock period to obtain

an output

Consider a k-segment

pipeline with a clock

cycle time tp to execute n tasks

 The first task T1 requires time ktp to complete

 The remaining n – 1 tasks finish at the rate of one task per clock cycle and will be completed

after time (n – 1)tp

 The total time to complete the n tasks is [k + n – 1]tp

 The above example requires [4 + 6 – 1] clock cycles to finish

 Consider a non-pipeline unit that performs the same operation and takes tn time to complete

each task

 The total time to complete n tasks would be ntn

 The speedup of a pipeline processing over an equivalent non-pipeline processing is defined by

the ratio

 As the number of tasks increase, the speedup becomes

 If we assume that the time to process a task is the same in both circuits, tn =k tp

 Therefore, the theoretical maximum speedup that a pipeline can provide is k

 Example:

Cycle time = tp = 20 ns # of segments = k = 4 # of tasks = n = 100

 The pipeline system will take (k + n – 1)tp = (4 + 100 –1)20ns = 2060 ns

 Assuming that tn = ktp = 4 * 20 = 80 ns,

 A non-pipeline system requires nktp = 100 * 80 = 8000 ns

 The speedup ratio = 8000/2060 = 3.88

 The pipeline cannot operate at its maximum theoretical rate

 One reason is that the clock cycle must be chosen to equal the time delay of the segment with

the maximum propagation time

 Pipeline organization is applicable for arithmetic operations and fetching instructions

ARITHMETIC PIPELINE

 Pipeline arithmetic units are usually found in very high speed computers

 They are used to implement floating-point operations, multiplication of fixed-point numbers,

and similar computations encountered in scientific problems

 Example for floating-point addition and subtraction

 Inputs are two normalized floating-point binary numbers

X = A x 2a

Y = B x 2b

 A and B are two fractions that represent the

mantissas

 a and b are the exponents

 Four segments are used to perform the

following:

 Compare the exponents

 Align the mantissas

 Add or subtract the mantissas

 Normalize the result

 X = 0.9504 x 103 and Y = 0.8200 x 102

 The two exponents are subtracted in the first

segment to obtain 3-2=1

 The larger exponent 3 is chosen as the

exponent of the result

 Segment 2 shifts the mantissa of Y to the right

to obtain Y = 0.0820 x 103

 The mantissas are now aligned

 Segment 3 produces the sum Z = 1.0324 x 103

 Segment 4 normalizes the result by shifting the mantissa once to the right and incrementing the

exponent by one to obtain Z = 0.10324 x 104

 The comparator, shifter, adder-subtractor, incrementer, and decrementer in the floating-point

pipeline are implemented with combinational circuits.

 Suppose that the time delays of the four segments are t1 = 60 ns, t2 = 70 ns, t3 = 100 ns,

t4 = 80 ns, and the interface registers have a delay of tr = 10 ns. The clock cycle is chosen to be

tp = t3 + tr = 110 ns. An equivalent non-pipeline floating point adder-subtractor will have a

delay time tn = t1 + t2 + t3 + t4 + tr = 320ns. In this case the pipelined adder has a speedup of

32011 10 = 2. 9 over the non-pipelined adder.

INSTRUCTION PIPELINE

 An instruction pipeline reads consecutive instructions from memory while previous instructions

are being executed in other segments

 This causes the instruction fetch and execute phases to overlap and perform simultaneous

operations

 If a branch out of sequence occurs, the pipeline must be emptied and all the instructions that

have been read from memory after the branch instruction must be discarded

 Consider a computer with an instruction fetch unit and an instruction execution unit forming a

two segment pipeline

 A FIFO buffer can be used for the fetch segment

 Thus, an instruction stream can be placed in a queue, waiting for decoding and processing by

the execution segment

 This reduces the average access time to memory for reading instructions

 Whenever there is space in the buffer, the control unit initiates the next instruction fetch phase

 The following steps are needed to process each instruction:

1. Fetch the instruction from memory

2. Decode the instruction

3. Calculate the effective address

4. Fetch the operands from memory

5. Execute the instruction

6. Store the result in the proper place

 The pipeline may not perform at its maximum rate

due to:

 Different segments taking different times to operate

 Some segment being skipped for certain operations

 Memory access conflicts

Example: Four-segment instruction pipeline

 Assume that the decoding can be combined with

calculating the EA in one segment

 Assume that most of the instructions store the result

in a register so that the execution and storing of the

result can be combined in one segment

 While an instruction is being executed in segment 4, the next instruction in sequence is busy

fetching an operand from memory in segment 3. The effective address may be calculated in a

separate arithmetic circuit for the third instruction, and whenever the memory is available, the

fourth and all subsequent instructions can be fetched and placed in an instruction FIFO

 Up to four sub operations in the instruction cycle can overlap and up to four different

instructions can be in progress of being processed at the same time

 The following figure shows the operation of the instruction pipeline. The four segments are

represented in the diagram with an abbreviated symbol.

 FI: Fetch an instruction from memory

 DA:Decode the instruction and calculate the effective address of the operand

 FO: Fetch the operand

 EX: Execute the operation

 It is assumed that the processor has separate instruction and data memories

 Assume now that instruction 3 is a branch instruction. As soon as this instruction is decoded in

segment DA in step 4, the transfer from FI to DA of the other instructions is halted until the

branch instruction is executed in step 6. If the branch is taken, a new instruction is fetched in

step 7. If the branch is not taken, the instruction fetched previously in step 4 can be used. The

pipeline then continues until a new branch instruction is encountered.

 Another delay may occur in the pipeline if the EX segment needs to store the result of the

operation in the data memory while the FO segment needs to fetch an operand. In that case,

segment FO must wait until segment EX has finished its operation.

 Reasons for the pipeline to deviate from its normal operation are:

 Resource conflicts caused by access to memory by two segments at the same time. Most of

these instructions can be resolved by using separate instruction and data memories.

 Data dependency conflicts arise when an instruction depends on the result of a previous

instruction, but his result is not yet available

 Branch difficulties arise from program control instructions that may change the value of PC

Methods to handle data dependency:

 Hardware interlocks are circuits that detect instructions whose source operands are

destinations of prior instructions. Detection causes the hardware to insert the required delays

without altering the program sequence.

 Operand forwarding uses special hardware to detect a conflict and then avoid it by routing the

data through special paths between pipeline segments. This requires additional hardware paths

through multiplexers as well as the circuit to detect the conflict.

 Delayed load is a procedure that gives the responsibility for solving data conflicts to the

compiler. The compiler is designed to detect a data conflict and reorder the instructions as

necessary to delay the loading of the conflicting data by inserting no-operation instructions.

Methods to handle branch instructions:

 Prefetching the target instruction in addition to the next instruction allows either instruction

to be available.

 A branch target buffer (BTB) is an associative memory included in the fetch segment of the

branch instruction that stores the target instruction for a previously executed branch. It also

stores the next few instructions after the branch target instruction. This way, the branch

instructions that have occurred previously are readily available in the pipeline without

interruption.

 The loop buffer is a variation of the BTB. It is a small very high speed register file maintained

by the instruction fetch segment of the pipeline. Stores all branches within a loop segment.

 Branch prediction uses some additional logic to guess the outcome of a conditional branch

instruction before it is executed. The pipeline then begins prefetching instructions from the

predicted path.

 Delayed branch is used in most RISC processors so that the compiler rearranges the

instructions to delay the branch.

CHARACTERISTICS OF MULTIPROCESSORS

 A multiprocessor system is an interconnection of two or more CPUs with memory and input-

output equipment. The term "processor" in multiprocessor can mean either a central processing

unit (CPU) or an input-output processor (lOP).

 As it is most commonly defined, a multiprocessor system implies the existence of multiple

CPUs. Multiprocessors are classified as multiple instruction stream, multiple data stream

(MIMD) systems.

 There are some similarities between multiprocessor and multicomputer systems since both

support concurrent operations. The network consists of several autonomous computers that may

or may not communicate with each other. A multiprocessor system is controlled by one

operating system that provides interaction between processors and all the components of the

system cooperate in the solution of a problem.

 Although some large-scale computers include two or more CPUs in their overall system.

Microprocessors take very little physical space and are very inexpensive brings about the

feasibility of interconnecting a large number of microprocessors into one composite system.

 Very-large-scale integrated circuit technology has reduced the cost of computer components

 Multiprocessing improves the reliability of the system so that a failure or error in one part has a

limited effect on the rest of the system.

 The benefit derived from a multiprocessor organization is an improved system performance.

The system derives its high performance in one of two ways.

1. Multiple independent jobs can be made to operate in parallel.

2. A single job can be partitioned into multiple parallel tasks.

 Multiprocessors are classified by the way their memory is organized.

 A multiprocessor system with common shared memory is classified as a shared memory or

tightly coupled multiprocessor. Most commercial tightly coupled multiprocessors provide a

cache memory with each CPU.

 An alternative model of microprocessor is the distributed-memory or loosely coupled system.

Each processor element in a loosely coupled system has its own private local memory.

 Loosely coupled systems are most efficient when the interaction between tasks is minimal,

whereas tightly coupled systems can tolerate a higher degree of interaction between tasks.

INTERCONNECTION STRUCTURES

 The components that form a multiprocessor system are CPUs, lOPs connected to input-output

devices, and a memory unit that may be partitioned into a number of separate modules.

 The interconnection between the components can have different physical configurations,

depending on the number of transfer paths that are available between the processors and

memory in a shared memory system or among the processing elements in a loosely coupled

system.

 There are several physical forms available for establishing an interconnection network. Some of

these schemes are:

1. Time-shared common bus

2. Multiport memory

3. Crossbar switch

4. Multistage switching network

5. Hypercube system

Time-Shared Common Bus

 A common-bus multiprocessor system consists

of a number of processors connected through a

common path to a memory unit. A time-shared

common bus for five processors is shown in Fig.

 Only one processor can communicate with the memory or another processor at any given time.

 Transfer operations are conducted by the processor that is in control of the bus at the time.

 A command is issued to inform the destination unit what operation is to be performed. The

receiving unit recognizes its address in the bus and responds to the control signals from the

sender, after which the transfer is initiated.

 The transfer conflicts must be resolved by incorporating a bus controller that establishes

priorities among the requesting units.

 A single common-bus system is restricted to one transfer at a time.

 The processors in the system can be kept busy more often through the implementation of two or

more independent buses to permit multiple simultaneous bus transfers.

 A more economical implementation

of a dual bus structure is depicted in

Fig.

 Each local bus may be connected to a

CPU, an lOP, or any combination of

processors.

 A system bus controller links each local bus to a common system bus.

 The IO devices connected to the local lOP, as well as the local memory, are available to the

local processor.

 If an lOP is connected directly to the system bus, the IO devices attached to it may be made

available to all processors. Only one processor can communicate with the shared memory and

other common resources through the system bus at any given time.

 The other processors are kept busy communicating with their local memory and IO devices.

 Part of the local memory may be designed as a cache memory attached to the CPU

Multiport Memory

 A multiport memory system employs separate buses between each memory module and each

CPU. This is shown in Fig. for four CPUs and four memory modules (MMs).

 Each processor bus is connected to each memory

module. A processor bus consists of the address, data,

and control lines required to communicate with memory.

 The memory module is said to have four ports and each

port accommodates one of the buses. The module must

have internal control logic to determine which port will

have access to memory at any given time.

 Memory access conflicts are resolved by assigning fixed priorities to each memory port. The

priority for memory access associated with each processor may be established by the physical

port position that its bus occupies in each module.

 The advantage of the multi port memory organization is the high transfer rate that can be

achieved because of the multiple paths between processors and memory.

 The disadvantage is that it requires expensive memory control logic and a large number of

cables and connectors.

Crossbar Switch

 The crossbar switch organization consists of a number of

cross points that are placed at intersections between

processor buses and memory module paths.

 The small square in each cross point is a switch that

determines the path from a processor to a memory

module.

 Each switch point has control logic to set up the transfer

path between a processor and memory.

 It examines the address that is placed in the bus to determine whether its particular module is

being addressed.

 It also resolves multiple requests for access to the same memory module on a predetermined

priority basis.

 The functional design of a crossbar switch connected to one memory module is shown in figure.

 The circuit consists of multiplexers that select the

data address, and control from one CPU for

communication with the memory module.

 Priority levels are established by the arbitration

logic to select one CPU when two or more CPUs

attempt to access the same memory.

 A crossbar switch organization supports

simultaneous transfers from memory modules because there is a separate path associated with

each module.

Multistage Switching Network

 The basic component of a multistage network is a two-

input, two-out interchange switch.

 The switch has the capability of connecting input A to

either of the outputs. Terminal B of the switch behaves in a

similar fashion. The switch also has the capability to

arbitrate between conflicting requests.

 Using the 2 x 2 switch as a building block, it is possible to

build multistage network to control the communication

between a number of sources and destinations.

 Consider the binary tree shown Fig. The two processors

P1 and P2 are connected through switches to eight

memory modules marked in binary from 000 through 111.

 The path from source to a destination is determined from

the binary bits of the destination number. The first bit of

the destination number determines the switch output in the first level. The second bit specifies

the output of the switch in the second level, and the third bit specifies the output of the switch in

the third level.

 Many different topologies have been proposed for multistage switching networks to control

processor-memory communication in a tightly coupled multiprocessor system or to control the

communication between the processing elements in a loosely coupled system.

UNIT-V 13 G JAGAN NAIK G

 One such topology is the omega switching network

shown in Fig.

 In this configuration, there is exactly one path from

each source to any particular destination.

 Some request patterns, however, cannot be

connected simultaneously. For example, any two

sources cannot be connected simultaneously to destinations 000 and 001.

Hypercube Interconnection

 The hypercube or binary n-cube multiprocessor structure is a loosely coupled system composed

of N = 2n processors interconnected in an n-dimensional binary cube.

 Each processor forms a node of the cube.

 Each processor has direct communication paths to n other neighbor processors. These paths

correspond to the edges of the cube.

 Fig shows the hypercube structure for n = 1, 2, and 3.

 A one-cube structure has n = 1 and 2n = 2. It contains

two processors interconnected by a single path.

 A two-cube structure has n = 2 and 2n = 4. It contains

four nodes interconnected as a square.

 A three-cube structure has eight nodes interconnected as a cube.

 An n -cube structure has 2n nodes with a processor residing in each node. Each node is

assigned a binary address in such a way that the addresses of two neighbors differ in exactly

one bit position.

 Routing messages through an n-cube structure may take from one to n links from a source node

to a destination node.

 For example, in a three-cube structure, node 000 can communicate directly with node 001. It

must cross at least two links to communicate with 011 (from 000 to 001 to 011 or from 000 to

010 to 011).

 A routing procedure can be developed by computing the exclusive-OR of the source node

address with the destination node address. The resulting binary value will have 1 bits

corresponding to the axes on which the two nodes differ. The message is then sent along any

one of the axes.

 For example, in a three-cube structure, a message at 010 going to 001 produces an XOR of the

two addresses equal to 011 . The message can be sent along the second axis to 000 and then

through the third axis to 001.

INTERPROCESSOR ARBITRATION

 Computer systems contain a number of buses at various levels to facilitate the transfer of

information between components. The CPU contains a number of internal buses for transferring

information between processor registers and ALU.

 A memory bus consists of lines for transferring data, address, and read/write information.

 An I/O bus is used to transfer information to and from input and output devices.

 A bus that connects major components in a multiprocessor system, such as CPUs, IOPs, and

memory, is called a system bus.

 The processors in a shared memory multiprocessor system request access to common memory

or other common resources through the system bus. If no other processor is currently utilizing

the bus, the requesting processor may be granted access immediately.

 Other processors may request the system bus at the same time. Arbitration must then be

performed to resolve this multiple contention for the shared resources. The arbitration logic

would be part of the system bus controller placed between the local bus and the system bus.

System Bus

 A typical system bus consists of approximately 100 signal lines. These lines are divided into

three functional groups: data, address, and control. In addition, there are power distribution

lines that supply power to the components.

 For example, the IEEE standard 796 multibus system has 16 data lines, 24 address lines, 26

control lines, and 20 power lines, for a total of 86 lines.

 Data transfers over the system bus may be synchronous or asynchronous.

 In a synchronous bus, each data item is transferred during a time slice known in advance to

both source and destination units. Synchronization is achieved by driving both units from a

common clock source.

 In an asynchronous bus, each data item being

transferred is accompanied by handshaking control

signals to indicate when the data are transferred from the

source and received by the destination

 The following table lists the 86 lines that are available in

the IEEE standard 796 multibus.

Serial Arbitration Procedure

 Arbitration procedures service all processor requests on the basis of established priorities. A

hardware bus priority resolving technique can be established by means of a serial or parallel

connection of the units requesting control of the system bus.

 The serial priority resolving technique is obtained from a daisy-chain connection of bus

arbitration circuits similar to the priority interrupt logic.

 The processors connected to the system bus are assigned priority according to their position

along the priority control line.

 The device closest to the priority line is assigned the highest priority. When multiple devices

concurrently request the use of the bus, the device with the highest priority is granted access to

it.

 The processor whose arbiter has a PI = 1 and PO = 0 is the one that is given control of the

system bus

 A processor may be in the middle of a bus operation when a higher priority processor requests

the bus. The lower-priority processor must complete its bus operation before it relinquishes

control of the bus.

 When an arbiter receives control of the bus (because its PI = 1 and PO = 0) it examines the

busy line. If the line is inactive, it means that no other processor is using the bus. The arbiter

activates the busy line and its processor takes control of the bus. However, if the arbiter finds

the busy line active, it means that another processor is currently using the bus.

 The arbiter keeps examining the busy line while the lower-priority processor that lost control of

the bus completes its operation.

 When the bus busy line returns to its inactive state, the higher-priority arbiter enables the busy

line, and its corresponding processor can then conduct the required bus transfers.

Parallel Arbitration Logic

 The parallel bus arbitration technique uses an

external priority encoder and a decoder as shown in

Fig. Each bus arbiter in the parallel scheme has a bus

request output line and a bus acknowledge input line.

 Each arbiter enables the request line when its

processor is requesting access to the system bus. The

processor takes control of the bus if its acknowledge

input line is enabled.

Dynamic Arbitration Algorithms

 A dynamic priority algorithm gives the system the capability for changing the priority of the

devices while the system is in operation.

 The time slice algorithm allocates a fixed-length time slice of bus time that is offered

sequentially to each processor, in round-robin fashion. The service given to each system

component with this scheme is independent of its location along the bus.

 In a bus system that uses polling, the bus grant signal is replaced by a set of lines called poll

lines which are connected to all units. These lines are used by the bus controller to define an

address for each device connected to the bus.

 When a processor that requires access recognizes its address, it activates the bus busy line and

then accesses the bus. After a number of bus cycles, the polling process continues by choosing a

different processor. The polling sequence is normally programmable, and as a result, the

selection priority can be altered under program control.

 The least recently used (LRU) algorithm gives the highest priority to the requesting device

that has not used the bus for the longest interval. The priorities are adjusted after a number of

bus cycles according to the LRU algorithm.

 In the first-come, first-serve scheme, requests are served in the order received. To implement

this algorithm, the bus controller establishes a queue arranged according to the time that the bus

requests arrive. Each processor must wait for its turn to use the bus on a first-in, first-out

(FIFO) basis.

 The rotating daisy-chain procedure is a dynamic extension of the daisy chain algorithm. In this

scheme there is no central bus controller, and the priority line is connected from the priority-out

of the last device back to the priority-in of the first device in a closed loop.

 Each arbiter priority for a given bus cycle is determined by its position along the bus priority

line from the arbiter whose processor is currently controlling the bus. Once an arbiter releases

the bus, it has the lowest priority.

INTERPROCESSOR COMMUNICATION AND SYNCHRONIZATION

 The various processors in a multiprocessor system must be provided with a facility for

communicating with each other. A communication path can be established through common

input-output channels.

 In a shared memory multiprocessor system, the most common procedure is to set aside a

portion of memory that is accessible to all processors. The primary use of the common memory

is to act as a message center similar to a mailbox, where each processor can leave messages for

other processors and pick up messages intended for it.

 The sending processor structures a request, a message, or a procedure, and places it in the

memory mailbox. Status bits residing in common memory are generally used to indicate the

condition of the mailbox, whether it has meaningful information, and for which processor it is

intended.

 The receiving processor can check the mailbox periodically to determine if there are valid

messages for it. The response time of this procedure can be time consuming since a processor

will recognize a request only when polling messages.

 A more efficient procedure is for the sending processor to alert the receiving processor directly

by means of an interrupt signal. This can be accomplished through a software-initiated

interprocessor interrupt by means of an instruction in the program of one processor which when

executed produces an external interrupt condition in a second processor. This alerts the

interrupted processor of the fact that a new message was inserted by the interrupting processor.

 In addition to shared memory, a multiprocessor system may have other shared resources. For

example, a magnetic disk storage unit connected to an lOP may be available to all CPUs. This

provides a facility for sharing of system programs stored in the disk.

 A communication path between two CPUs can be established through a link between two lOPs

associated with two different CPUs. This type of link allows each CPU to treat the other as an

IO device so that messages can be transferred through the IO path.

 To prevent conflicting use of shared resources by several processors there must be a provision

for assigning resources to processors. This task is given to the operating system. There are three

organizations that have been used in the design of operating system for multiprocessors: master-

slave configuration, separate operating system, and distributed operating system.

 In a master-slave mode, one processor, designated the master, always executes the operating

system functions. The remaining processors, denoted as slaves, do not perform operating

system functions. If a slave processor needs an operating system service, it must request it by

interrupting the master and waiting until the current program can be interrupted.

 In the separate operating system organization, each processor can execute the operating system

routines it needs. This organization is more suitable for loosely coupled systems where every

processor may have its own copy of the entire operating system.

 In the distributed operating system organization, the operating system routines are distributed

among the available processors. However, each particular operating system function is assigned

to only one processor at a time. This type of organization is also referred to as a floating

operating system since the routines float from one processor to another and the execution of the

routines may be assigned to different processors at different times.

 In a loosely coupled multiprocessor system the memory is distributed among the processors and

there is no shared memory for passing information.

 The communication between processors is by means of message passing through IO channels.

The communication is initiated by one processor calling a procedure that resides in the memory

of the processor with which it wishes to communicate. When the sending processor and

receiving processor name each other as a source and destination, a channel of communication is

established.

 A message is then sent with a header and various data objects used to communicate between

nodes. There may be a number of possible paths available to send the message between any two

nodes.

 The operating system in each node contains routing information indicating the alternative paths

that can be used to send a message to other nodes. The communication efficiency of the

interprocessor network depends on the communication routing protocol, processor speed, data

link speed, and the topology of the network.

Interprocessor Synchronization

 The instruction set of a multiprocessor contains basic instructions that are used to implement

communication and synchronization between cooperating processes.

 Communication refers to the exchange of data between different processes. For example,

parameters passed to a procedure in a different processor constitute interprocessor

communication.

 Synchronization refers to the special case where the data used to communicate between

processors is control information. Synchronization is needed to enforce the correct sequence of

processes and to ensure mutually exclusive access to shared writable data.

 Multiprocessor systems usually include various mechanisms to deal with the synchronization of

resources.

 Low-level primitives are implemented directly by the hardware. These primitives are the basic

mechanisms that enforce mutual exclusion for more complex mechanisms implemented in

software.

 A number of hardware mechanisms for mutual exclusion have been developed.

 One of the most popular methods is through the use of a binary semaphore. Mutual Exclusion

with a Semaphore

 A properly functioning multiprocessor system must provide a mechanism that will guarantee

orderly access to shared memory and other shared resources.

 This is necessary to protect data from being changed simultaneously by two or more processors.

This mechanism has been termed mutual exclusion. Mutual exclusion must be provided in a

multiprocessor system to enable one processor to exclude or lock out access to a shared

resource by other processors when it is in a critical section.

 A critical section is a program sequence that, once begun, must complete execution before

another processor accesses the same shared resource.

 A binary variable called a semaphore is often used to indicate whether or not a processor is

executing a critical section. A semaphore is a software controlled flag that is stored in a

memory location that all processors can access.

 When the semaphore is equal to 1, it means that a processor is executing a critical program, so

that the shared memory is not available to other processors.

 When the semaphore is equal to 0, the shared memory is available to any requesting processor.

Processors that share the same memory segment agree by convention not to use the memory

segment unless the semaphore is equal to 0, indicating that memory is available . They also

agree to set the semaphore to 1 when they are executing a critical section and to clear it to 0

when they are finished.

 Testing and setting the semaphore is itself a critical operation and must be performed as a single

indivisible operation. If it is not, two or more processors may test the semaphore simultaneously

and then each set it, allowing them to enter a critical section at the same time. This action would

allow simultaneous execution of critical section, which can result in erroneous initialization of

control parameters and a loss of essential information.

 A semaphore can be initialized by means of a test and set instruction in conjunction with a

hardware lock mechanism.

 A hardware lock is a processor generated signal that serves to prevent other processors from

using the system bus as long as the signal is active. The test-and-set instruction tests and sets a

semaphore and activates the lock mechanism during the time that the instruction is being

executed.

 This prevents other processors from changing the semaphore between the time that the

processor is testing it and the time that it is setting it. Assume that the semaphore is a bit in the

least significant position of a memory word whose address is symbolized by SEM.

 Let the mnemonic TSL designate the "test and set while locked" operation. The instruction

TSL SEM will be executed in two memory cycles (the first to read and the second to write)

without interference as follows:

R M[SEM] Test semaphore

M[SEM]1 Set semaphore

 The semaphore is tested by transferring its value to a processor register R and then it is set to 1.

The value in R determines what to do next.

 If the processor finds that R = 1, it knows that the semaphore was originally set. (The fact that it

is set again does not change the semaphore value.) That means that another processor is

executing a critical section, so the processor that checked the semaphore does not access the

shared memory.

 If R = 0, it means that the common memory (or the shared resource that the semaphore

represents) is available. The semaphore is set to 1 to prevent other processors from accessing

memory. The processor can now execute the critical section.

 The last instruction in the program must clear location SEM to zero to release the shared

resource to other processors. Note that the lock signal must be active during the execution of

the test-and-set instruction. It does not have to be active once the semaphore is set.

 Thus the lock mechanism prevents other processors from accessing memory while the

semaphore is being set. The semaphore itself, when set, prevents other processors from

accessing shared memory while one processor is executing a critical section.

	Objectives
	MODULE – I [10 Periods]
	MODULE – II [10 Periods]
	MODULE – III [9 Periods]
	MODULE – IV [10 Periods]
	MODULE – V [9 Periods]
	Textbook:
	References:
	E-Resources:
	Outcomes:
	COMPUTER ORGANIZATION AND ARCHITECTURE
	DIGITAL COMPUTER
	BLOCK DIAGRAM OF DIGITAL COMPUTER
	COMPUTER ORGANIZATION
	COMPUTER ARCHITECTURE
	LOGIC GATES USED IN DIGITAL COMPUTER
	if (P=1) then R2← R1
	P: R2← R1
	BUS← C, R1← BUS

	THREE-STATE BUS BUFFERS:
	Memory Transfer:
	Read: DR<- M [AR]

	Types of Micro-operations:
	REGISTER TRANSFER AND MICROOPERATIONS
	if (P=1) then R2← R1
	P: R2← R1

	Bus and Memory Transfers:
	Common bus system is with multiplexers:
	BUS← C, R1← BUS
	R1← C
	Three-State Bus Buffers:

	Memory Transfer: (1)
	Read: DR<- M [AR]
	Write: M [AR] <- R1
	Types of Micro-operations:

	Arithmetic Micro-operations:
	R3 ← R1 + R2
	R3 ← R1 + R2 + 1
	Binary Adder:
	BINARY ADDER.

	Binary Adder – Subtractor:
	Binary Incrementer:

	Arithmetic Circuit:
	Hardware Implementation:

	Shift Microoperations:
	 Logical Shift:
	 Circular Shift:
	 Arithmetic Shift:
	Hardware Implementation:

	BASIC COMPUTER ORGANIZATION AND DESIGN
	 Accumulator (AC):
	Addressing of Operand:
	immediate operand.

	2. Computer Registers:
	Common Bus System:
	3. Computer Instructions:
	Instruction Set Completeness:
	4. Timing and Control:
	5. Instruction Cycle:
	Fetch and Decode:

	Determine the Type of Instruction:
	Register-Reference Instructions:
	6. Memory-Reference Instructions:
	AND to AC:
	ADD to AC:
	Control Flowchart:
	7. Input-Output and Interrupt:
	Input-Output Configuration:
	Input-Output Instructions:
	Program Interrupt:
	Interrupt cycle:

	UNIT-2
	Microprogram control unit:
	Addressing sequence
	Micro instruction format
	Fetch routine

	Microprogram sequencer

	Central Processing Unit
	For these cases, the B field is marked with a dash. We assign 000 to any unused field when formulating the binary control word, although any other binary number may be used.
	A register can be cleared to 0 with an exclusive-OR operation. This is because x x = 0.
	A memory unit that stores control words is referred to as a control memory.
	Two Address Instructions:
	One Address Instructions:
	Zero Address Instructions:
	Implied Mode:
	In this mode the operands are specified in the definition of the instruction.
	All register reference instructions that use an accumulator are implied mode instructions. Zero address in a stack organization computer is implied mode instructions.
	In this mode the operand is specified in the instruction itself.

	Example
	Shift Instruction

	Program control
	Section 3.1 – Data Types
	Section 3.2 – Complements
	Section 3.3 – Fixed-Point Representation
	Section 3.4 – Floating-Point Representation
	Section 3.5 – Other Binary Codes
	Section 3.6 – Error Detection Codes
	Addition and Subtraction :
	Multiplication Algorithm:
	Booth’s algorithm :
	Division Algorithms
	Algorithm:
	Addition and Subtraction of Floating Point Numbers
	Multiplication:
	Memory Organization: Memory Hierarchy Main Memory Auxiliary Memory Associative Memory Cache Memory Virtual Memory.
	Priority Interrupt
	MEMORY HIERARCHY
	MAIN MEMORY
	RAM AND ROM CHIPS
	MEMORY ADDRESS MAP
	MEMORY CONNECTION TO CPU

	AUXILIARY MEMORY:
	MAGNETIC DISKS
	MAGNETIC TAPE

	ASSOCIATIVE MEMORY
	HARDWARE ORGANIZATION
	MATCH LOGIC
	xj= Aj Fij + A'jF'ij
	Mi= x1 x2 x3 … xn
	Mi = (x1 + K '1) (x2 + K '2) (x3 + K '3) …. (xn + K 'n)
	READ OPERATION
	WRITE OPERATION
	CACHE MEMORY
	ASSOCIATIVE MAPPING
	DIRECT MAPPING

	VIRTUAL MEMORY
	ADDRESS SPACE AND MEMORY SPACE
	ADDRESS MAPPING USING PAGES
	ASSOCIATIVE MEMORY PAGE TABLE
	PAGE REPLACEMENT

	PERIPHERAL DEVICES
	INPUT-OUTPUT INTERFACE
	I/O BUS AND INTERFACE MODULES
	I/O VERSUS MEMORY BUS
	ISOLATED VERSUS MEMORY-MAPPED I/O
	EXAMPLE OF I/O INTERFACE

	ASYNCHRONOUS DATA TRANSFER
	STROBE CONTROL
	HANDSHAKING
	ASYNCHRONOUS SERIAL TRANSFER
	Asynchronous Communication Interface
	First-In, First-Out Buffer
	EXAMPLE OF PROGRAMMED I/O
	INTERRUPT-INITIATED I/O
	SOFTWARE CONSIDERATIONS
	PRIORITY INTERRUPT
	DAISY-CHAINING PRIORITY
	PARALLEL PRIORITY INTERRUPT
	Priority Encoder
	Interrupt Cycle
	Software Routines
	Initial and Final Operations
	 Initial Sequence
	 Final Sequence

	DIRECT MEMORY ACCESS (DMA):
	DMA CONTROLLER
	DMA Transfer

	UNIT-V
	Parallel Processing Pipelining Arithmetic Pipeline Instruction Pipeline.
	Characteristics of Multiprocessors Interconnection Structures

	PARALLEL PROCESSING
	PIPELINING
	ARITHMETIC PIPELINE
	INSTRUCTION PIPELINE
	Example: Four-segment instruction pipeline
	Methods to handle data dependency:
	Methods to handle branch instructions:

	CHARACTERISTICS OF MULTIPROCESSORS
	INTERCONNECTION STRUCTURES
	Time-Shared Common Bus
	Multiport Memory
	Crossbar Switch
	Multistage Switching Network
	Hypercube Interconnection

	INTERPROCESSOR ARBITRATION
	Serial Arbitration Procedure
	Parallel Arbitration Logic
	Dynamic Arbitration Algorithms
	INTERPROCESSOR COMMUNICATION AND SYNCHRONIZATION
	Interprocessor Synchronization

